Day39

本文详细介绍了如何在有向无环图(AOE网)中寻找关键路径,即完成所有活动所需的最短时间。通过拓扑排序计算每个节点的最早开始时间,然后使用逆拓扑排序计算最晚开始时间。当最早开始时间和最晚开始时间相等时,确定关键路径节点。代码展示了具体实现,并通过示例进行了验证。
摘要由CSDN通过智能技术生成

1.代码

/**
	 *********************
	 * Critical path. Net validity checks such as loop check not implemented. The
	 * source should be 0 and the destination should be n-1.
	 *
	 * @return The node sequence of the path.
	 *********************
	 */
	public boolean[] criticalPath() {
		// One more value to save simple computation.
		int tempValue;

		// 遍历矩阵,求每个节点的入度
		int[] tempInDegrees = new int[numNodes];
		for (int i = 0; i < numNodes; i++) {
			for (int j = 0; j < numNodes; j++) {
				if (weightMatrix.getValue(i, j) != -1) {
					tempInDegrees[j]++;
				} // Of if
			} // Of for j
		} // Of for i
		System.out.println("In-degree of nodes: " + Arrays.toString(tempInDegrees));

		// 每个节点的最早开始时间(拓扑排序)
		int[] tempEarliestTimeArray = new int[numNodes];
		for (int i = 0; i < numNodes; i++) {
			// This node cannot be removed.
			if (tempInDegrees[i] > 0) {
				continue;
			} // Of if

			System.out.println("Removing " + i);
			// 与已有的最早时间进行比较(较大值)
			for (int j = 0; j < numNodes; j++) {
				if (weightMatrix.getValue(i, j) != -1) {
					tempValue = tempEarliestTimeArray[i] + weightMatrix.getValue(i, j);
					if (tempEarliestTimeArray[j] < tempValue) {
						tempEarliestTimeArray[j] = tempValue;
					} // Of if
						// 入度减一
					tempInDegrees[j]--;
				} // Of if
			} // Of for j
		} // Of for i

		System.out.println("Earlest start time: " + Arrays.toString(tempEarliestTimeArray));

		// 出度
		int[] tempOutDegrees = new int[numNodes];
		for (int i = 0; i < numNodes; i++) {
			for (int j = 0; j < numNodes; j++) {
				if (weightMatrix.getValue(i, j) != -1) {
					tempOutDegrees[i]++;
				} // Of if
			} // Of for j
		} // Of for i
		System.out.println("Out-degree of nodes: " + Arrays.toString(tempOutDegrees));

		// 拓扑排序最后一个结点的最早t=最迟t
		int[] tempLatestTimeArray = new int[numNodes];
		for (int i = 0; i < numNodes; i++) {
			tempLatestTimeArray[i] = tempEarliestTimeArray[numNodes - 1];
		} // Of for i
			// 最迟开始时间(逆拓扑排序)
		for (int i = numNodes - 1; i >= 0; i--) {
			// This node cannot be removed.
			if (tempOutDegrees[i] > 0) {
				continue;
			} // Of if

			System.out.println("Removing " + i);

			for (int j = 0; j < numNodes; j++) {
				if (weightMatrix.getValue(j, i) != -1) {
					tempValue = tempLatestTimeArray[i] - weightMatrix.getValue(j, i);
					if (tempLatestTimeArray[j] > tempValue) {
						tempLatestTimeArray[j] = tempValue;
					} // Of if
						// 出度减一
					tempOutDegrees[j]--;
					System.out.println("The out-degree of " + j + " decreases by 1.");
				} // Of if
			} // Of for j
		} // Of for i

		System.out.println("Latest start time: " + Arrays.toString(tempLatestTimeArray));
		// 如果最早开始时间==最迟开始时间;关键路径
		boolean[] resultCriticalArray = new boolean[numNodes];
		for (int i = 0; i < numNodes; i++) {
			if (tempEarliestTimeArray[i] == tempLatestTimeArray[i]) {
				resultCriticalArray[i] = true;
			} // Of if
		} // Of for i

		System.out.println("Critical array: " + Arrays.toString(resultCriticalArray));
		System.out.print("Critical nodes: ");
		for (int i = 0; i < numNodes; i++) {
			if (resultCriticalArray[i]) {
				System.out.print(" " + i);
			} // Of if
		} // Of for i
		System.out.println();

		return resultCriticalArray;
	}// Of criticalPath

	/**
	 *********************
	 * The entrance of the program.
	 * 
	 * @param args Not used now.
	 *********************
	 */
	public static void main(String args[]) {
		Net tempNet0 = new Net(3);
		System.out.println(tempNet0);

		int[][] tempMatrix1 = { { 0, 9, 3, 6 }, { 5, 0, 2, 4 }, { 3, 2, 0, 1 }, { 2, 8, 7, 0 } };
		Net tempNet1 = new Net(tempMatrix1);
		System.out.println(tempNet1);

		// Dijkstra
		tempNet1.dijkstra(1);

		// An undirected net is required.
		int[][] tempMatrix2 = { { 0, 7, MAX_DISTANCE, 5, MAX_DISTANCE }, { 7, 0, 8, 9, 7 },
				{ MAX_DISTANCE, 8, 0, MAX_DISTANCE, 5 }, { 5, 9, MAX_DISTANCE, 0, 15, },
				{ MAX_DISTANCE, 7, 5, 15, 0 } };
		Net tempNet2 = new Net(tempMatrix2);
		tempNet2.prim();

		// A directed net without loop is required.
		// Node cannot reach itself. It is indicated by -1.
		int[][] tempMatrix3 = { { -1, 3, 2, -1, -1, -1 }, { -1, -1, -1, 2, 3, -1 }, { -1, -1, -1, 4, -1, 3 },
				{ -1, -1, -1, -1, -1, 2 }, { -1, -1, -1, -1, -1, 1 }, { -1, -1, -1, -1, -1, -1 } };

		Net tempNet3 = new Net(tempMatrix3);
		System.out.println("-------critical path");
		tempNet3.criticalPath();
	}// Of main
}// Of class Net

2.运行结果:

3.总结: 

a.关键路径:若有向图中,诸顶点表示事件,诸有向边表示活动持续事件,则该图为活动边网络,简称AOE网。AOE网中的关键路径,就是完成整个网络所需的最短时间,亦最长路径,AOE网中,往往有若干项活动可以平行的进行,因此,从开始顶点到最后一个顶点的最长路径称为关键路径。

b.求最早时间时,基于的是拓扑排序,求最晚时间时是基于逆拓扑排序。

c.最后一个结点的最早开始时间等于最晚开始时间。

d.最早开始时间从第一个结点开始计算,最晚开始时间从最后一个开始计算。

e.最早开始时间取较大值,最晚开始时间取较小值(因为一个事件的发生需要其前面的活动全部完成)。

f.拓扑排序:

  • 通过遍历,从图中找到一个没有前驱顶点输出。
  • 删除以这个点为起点的边。(它的指向的边删除,为了找到下个没有前驱的顶点)
  • 重复上述,直到最后一个顶点被输出。如果还有顶点未被输出,则说明有环。

g.最早开始时间与最晚开始时间相等的结点就构成了关键路径。 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值