这次有幸参加了NVIDIA的2024暑期训练营,学习了如何基于NVIDIA NIM(NVIDIA Inference Microservices) 平台构建LLM-RAG和多模态智能体。
在当前快速发展的AI领域,RAG技术通过结合大语言模型(LLM)和动态检索机制,能够实时连接外部数据源,从而显著提升模型的输出质量和准确性。这不仅使得AI系统能够处理更复杂的查询,还能提供更加个性化和智能化的用户体验。多模态智能体则进一步扩展了AI的应用边界,通过将文字、语音、图像、视频等多种形式的数据融合处理,使AI系统具备更强的理解和生成能力。这种技术在许多领域,如自动驾驶、医疗影像、智能客服等,都展现出了巨大的潜力和应用价值。这使得预测黄金的涨跌变成可能。
单纯的构想没有行动只会是空想,只有付诸于实施才能把梦想变成现实。
l 明确目标:
预测黄金涨跌幅的人工智能助手

l 目标拆分:
1. 获取资料数据 —— 获得黄金价格的历史数据
2. 多模态AI ——根据数据生成相应的曲线和图像,作为下一步的输入;
3. RAG系统——RAG系统AI可以根据知识库检索到的信息,作为上下文输入,提高输出结果的准确度。在这里选取图像分析方面,目标输出是图标数据结论和更加细化的趋势分析比较。
4. 数据输出系统——AI通过图像数据的趋势对比输出结论。
上述部分把任务拆分后,构建AI Agent就是把这几块拼在一起,很像搭积木,想要替换功能只需要对其中的板块进行替换。接下去就是具体执行细化