pandas实现按行取值或者按照行取另外一组数据的值

本文介绍了Pandas库中用于数据选取的重要函数iloc和loc的使用方法。通过示例展示了如何按行、按列选取数据,包括取特定范围的行和列,以及根据条件选取数据。讲解了iloc基于整数位置选取,而loc则需要指定列名。同时,文中还提到了如何结合条件从多个DataFrame中选取数据。
摘要由CSDN通过智能技术生成

pandas按行,按列取值,主要使用的是ilocloc函数进行取值
下面就介绍下取值
数据
这个是我创建的数据,现在我们需要取出第一行到第五行,第一列到第5列的数据

import pandas as pd

data = pd.read_excel('excel_col.xlsx')
# 因为列索引和行索引都是从0开始,所以只需要取到5,但不包含5,有点类似于列表取值
print(data.iloc[:5,:5])

在这里插入图片描述
如果想直接从第3列开始

data.iloc[:5,2:5]

在这里插入图片描述
以上为iloc函数,iloc[],前面的为取行,然后使用,隔开再取列
如果取单独的一行,用第1行举例,取第1行,从第4列开始,取到最后一列

data.iloc[0,3:]

在这里插入图片描述
列同上,如果是取单独的一列或者单独的一行,则类型为series
在这里插入图片描述
接下来使用loc函数,loc函数,不同于iloc,loc函数后面的列,必须为列名,不能直接是列的索引(即数字)
因为我的数据比较特殊,列名是用数字代替的,所以希望大家不要混肴
还是一样,取前4行,前4列
需要注意的是对于**iloc[]函数来讲,我们指定最后一行的时候,是不包含的,但是loc[]**是包含的

# 后面的列表里面是列名,取得是多个列名时候,使用列表包起来
data.loc[0:3,[0,1,2,3]]

在这里插入图片描述
有时候,我们读取的是两个文件,然后根据第一个文件满足条件的行,取第二个文件的行数
使用loc即可满足
data1
data2
上面是两个dataframe
现在我需要在第一个dataframe取出第一列满足<50数字的行,然后取出data2中的行
data1中第一列,小于50的有第2,4,5,13,14行,然后我们取出data2中的2,4,5,13,14行,因为索引从零开始
所以最后的行的索引是1,3,4,12,13

import pandas as pd

data = pd.read_excel('excel_col.xlsx')
data2 = pd.read_excel('test.xlsx')

# 先将第一列,转换为list
list_new = data.iloc[:,0].tolist()
# 取<50的数字的index
sat_list = [list_new.index(i) for i in list_new if i < 50]
# 使用loc直接取满足条件的data2数据的所有行
# 上面说过因为loc,后面的列必须是列名,所有data2.columns.tolist()直接取所有的列名,并转换为list
new_data = data2.loc[sat_list,data2.columns.tolist()]

在这里插入图片描述

### 回答1: 你可以使用 pandas 的 loc 或 iloc 方法来选择 DataFrame 中的特定。loc 方法使用名称,iloc 方法使用索引。 下面是一个示例代码,假设你有一个名为 df 的 DataFrame,并且你想要选择其中的 "column1" 和 "column2" 两: ``` selected_cols = df.loc[:, ["column1", "column2"]] ``` 或者 ``` selected_cols = df.iloc[:, [0, 1]] ``` 以上两种方法都会返回一个新的 DataFrame,其中只包含选择的。请注意,这里使用了表来指定要选择的。如果你只需要选择一,可以省略表,直接使用名称或索引。 ### 回答2: pandas是一种常用的数据处理和分析工具,可以用来处理各种类型的数据集。要从数据集中选择其中几,可以使用pandas的DataFrame对象中的[](方括号)操作符。 DataFrame对象通常用来表示二维数据表格,其中的可以是不同的数据类型。下面是一个示例代码,展示如何使用pandas选择其中几: ```python import pandas as pd # 创建一个示例DataFrame对象 data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]} df = pd.DataFrame(data) # 选择其中几 subset = df[['A', 'C']] print(subset) ``` 以上代码中,首先导入了pandas库,并创建了一个示例的DataFrame对象df,其中包含了3(A、B和C),每都有3个元素。然后,使用[]操作符选择'A'和'C'两,并将结果赋给subset。最后,打印了选择的结果。 运行以上代码后,输出结果如下: ``` A C 0 1 7 1 2 8 2 3 9 ``` 可以看到,通过使用[]操作符,我们成功从DataFrame对象中选择了'A'和'C'两,得到了一个只包含这两的新的DataFrame对象subset。 ### 回答3: pandas是一个强大的数据处理库,它提供了各种方法来读、处理和分析数据。我们可以使用pandas的DataFrame对象来表示数据,并对其进行索引、查询和筛选等操作。 要其中几,我们可以使用DataFrame的名进行索引和筛选。 假设我们有一个名为df的DataFrame对象,它包含了多个,我们可以使用下面的方法其中几: 1. 通过名直接: ``` df[['名1', '名2']] ``` 例如:名为'名1'和'名2'的两,可以写作`df[['名1', '名2']]`。 2. 通过索引位置: ``` df.iloc[:, [索引位置1, 索引位置2]] ``` 例如:索引位置为1和3的两,可以写作`df.iloc[:, [1, 3]]`。 3. 通过布尔条件筛选: ``` df[df['条件名'] > 0][['名1', '名2']] ``` 例如:满足条件名为"条件名"大于0的行的'名1'和'名2'两,可以写作`df[df['条件名'] > 0][['名1', '名2']]`。 这些方法可以根据需要进行组合和扩展,以灵活地出我们所需的。使用pandas的这些方法,我们可以轻松地从DataFrame中出其中几进行后续的数据处理和分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vergil_Zsh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值