1850:【07NOIP提高组】树网的核
设T=(V,E,W)是一个无圈且连通的无向图(也称无根树),每条边带有正整数的权,我们称T为树网(treenetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点。
路径:树网中任何两个结点a,b都存在唯一的一条简单路径,用d(a,b)表示以a,b为端点的路径长度,它是该路径上各边长度之和。我们称d(a,b)为a,b两个结点间的距离。
一点v到一条路径p的距离为该点与p上的最近的结点的距离:
d(v,p)=min{d(v,u),u为路径p上的结点}。
树网的直径:树网中最长的路径称为树网的直径。对于给定的树网T,直径不一定是唯一的,但是可以证明:各直径的中点(不一定恰好是某个结点,可能在某条边的内部)是唯一的,我们称该点为树网的中心。
偏心距ECC(F):树网T中距路径F最远的结点到路径F的距离,即
ECC(F)=max{d(v,F),v∈V}。
任务:对于给定的树网T=(V,E,W)和非负整数S,求一个路径F,它是某直径上的一段路径(该路径的两端均为树网中的结点),其长度不超过S(可以等于S),使偏心距ECC(F)最小,我们称这个路径为树网T=(V,E,W)的核(Core)。必要时,F可以退化为某个结点。一般来说,在上述定义下,核不一定只有一个,但是最小偏心距是唯一的。
下面的图给出了一个树网的一个实例。图中,A-B与A-C是两条 直径,长度均为20。点W是树网的中心,EF边的长度为5。如果指定S=11,则树网的核为路径DEFG(也可以取为路径DEF),偏心距为8,如果指定S=0(或s=1、s=2),则树网的核为结点F,偏心距为12。
#include<cstdio>
#include<algorithm>
#include<cstring>
const int inf=0x3f3f3f3f;
using namespace std;
int n,s,a,b,c,maxx=0,mxi,mxj;
int dis[305][305];
int read(){
int ans=0,f=1;char c=getchar();
while(c<'0'||c>'9'){
if(c=='-')f=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
ans=ans*10+c-48;
c=getchar();
}
return ans*f;
}
int main(){
n=read();s=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j)dis[i][j]=inf;
for(int i=1;i<=n-1;i++){
a=read();b=read();c=read();dis[a][b]=dis[b][a]=c;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(dis[i][k]>=inf||dis[k][j]>=inf)continue;
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
if(dis[i][j]>maxx){
maxx=dis[i][j];
mxi=i;mxj=j;
}
}
int ans=inf;
for(int i=1;i<=n;i++){
if(dis[mxi][i]+dis[i][mxj]!=dis[mxi][mxj])continue;
for(int j=1;j<=n;j++){
if(dis[mxi][j]+dis[j][mxj]!=dis[mxi][mxj]||dis[i][j]>s)continue;
int ecc=0;
ecc=max(min(dis[mxi][i],dis[mxi][j]),min(dis[mxj][i],dis[mxj][j]));
ans=min(ans,ecc);
}
}
printf("%d",ans);
return 0;
}
1851:【08NOIP提高组】笨小猴
笨小猴的词汇量很小,所以每次做英语选择题的时候都很头痛。经实验证明,用这种方法去选择选项的时候选对的几率非常大!
这种方法的具体描述如下:假设maxn是单词中出现次数最多的字母的出现次数,minn是单词中出现次数最少的字母的出现次数,如果maxn-minn是一个质数,那么笨小猴就认为这是一个Lucky Word,这样的单词很可能就是正确答案。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#define fre(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
using namespace std;
const int MAX=2147483647;
const int N=1e6;
string s;
int f[30],maxn=0,minn=MAX;
bool check(int x)
{
if(x<2) return 0;
if(x==2) return 1;
for(int i=2;i*i<=x;i++) if(x%i==0) return 0;
return 1;
}
int main()
{
//fre();
cin>>s;
int len=s.size();
for(int i=0;i<len;i++) f[s[i]-'a']++;
for(int i=0;i<26;i++)
if(f[i]) maxn=max(f[i],maxn),minn=min(f[i],minn);
if(check(maxn-minn)) cout<<"Lucky Word"<<endl<<maxn-minn<<endl;
else cout<<"No Answer"<<endl<<0<<endl;
return 0;
}
1852:【08NOIP提高组】火柴棒等式
给你n根火柴棒,你可以拼出多少形如“A+B=C”的等式?等式中的A、B、C是用火柴棒拼出的整数(若该整数非零,则最高位不能为零)。用火柴棒拼数字0-9的拼法如图所示:
注意:1.加号和等号各自需要2根火柴棒
2.如果A≠B,则A+B=c或B+A=C视为不同的等式(A、B、C>=0)
3.n根火柴棒必须全部用上
#include<cstdio>
#include<cstring>
using namespace std;
const int use[]={6,2,5,5,4,5,6,3,7,6,2};
int n,ans;
char cal[100];
bool getnum(int len,int &now,int &i,int jh)
{
int bz=0;
while(1)
{
if(cal[i]>'9')
break;
if(i==len+1)
{
bz=1;break;
}
if(now==-1)
{
now=cal[i]-'0';
i++;
continue;
}
now*=10;
now+=cal[i]-'1'+1;
i++;
}
if(jh==1)
bz=0;
if(now==-1||bz==1)
return false;
i++;
return true;
}
void work()
{
int now=-1,now1=-1,res=-1;
int len=strlen(cal)-1;
int cnt=0;
for(int i=0;i<=len;i++)
if(cal[i]>'9&#