poj 1036 Gangsters

POJ的第2个题。也是动归,其中dp[i][j]表示是第i个时刻,门开到j的程度时的最大价值。

当然了状态比较好想的,此时刻的价值必然与前面的时刻是有关的,联系就是前一个时刻的j,也就是与前一时刻的门的程度是相关的,并且一个时刻门只有三种可能。1:开一个单位。2:关一个单位。3:与之前的一样。并且要使用滚动数组来做这个,不然我的内存可能会超,没试过因为这种动态转移方程一般都用滚动数组来节省空间,直接看会就是一劳永逸的事了。下面附代码。

#include<iostream>
#include<algorithm>
using namespace std;
struct node{
	int time;
	int value;
	int silm;
};
node gangster[110];
int mark[30010];
int dp[3][110];
bool cmp(node a,node b)
{
	if(a.time<b.time)
		return true;
	else return false;
}
int maxi(int a,int b)
{
	if(a>b)
		return a;
	else return b;
}
int main()
{
	int N,K,T,i,j,w,p,mabi;
	cin>>N>>K>>T;
	for(i=1;i<=N;i++)
	{
		cin>>gangster[i].time;
		mark[gangster[i].time]=1;
	}
	for(i=1;i<=N;i++)
		cin>>gangster[i].value;
	for(i=1;i<=N;i++)
		cin>>gangster[i].silm;
	sort(gangster+1,gangster+1+N,cmp);
	mabi=0;
	for(i=0;i<=T;i++)
		for(j=0;j<=i&&j<=K;j++)
		{
			w=0;
			dp[i%2][j]=0;
			if(mark[i]==1)
			{
				for(p=1;p<=N;p++)
				{
					if(gangster[p].time==i&&gangster[p].silm==j)
						w=w+gangster[p].value;
				}
			}
			if(j==0)
			{
				dp[i%2][j]=maxi(dp[1-i%2][j],dp[1-i%2][j+1]);
			}
			else if(j==K)
			{
				dp[i%2][j]=maxi(dp[1-i%2][j],dp[1-i%2][j-1]);
			}
			else dp[i%2][j]=maxi(maxi(dp[1-i%2][j],dp[1-i%2][j-1]),dp[1-i%2][j+1]);
			dp[i%2][j]+=w;
			if(dp[i%2][j]>mabi)
				mabi=dp[i%2][j];
		}
	cout<<mabi<<endl;
	return 0;
}


这个程序应该能优化时间复杂度的,以前做过一个。以后可能有补充。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值