RRT路径规划进阶:基于障碍密度的自适应采样改进 RRT 算法(Python完整代码+动画)

一、💡 项目简介

RRT (快速随机树)是一种在高维处理中常见的路径规划算法,实用性高。本文基于经典 RRT 算法,提出了一种基于 障碍物密度感知和树展尺调节的自适应采样 方案,提升路径规划成功率和效率。


二、🔧 算法原理分析

功能 描述
自适应采样 根据树展尺和当前节点与目标点距离条件,调节采样半径和目标偏移概率
障碍密度感知 判断周围障碍物数量,强化逻辑
动态步长 障碍物密集区减少步长,避免快速挑战复杂路径

三、🦜 核心类解析

【Environment】环境类
  • 展示区域和障碍物,使用 shapely 判断碰撞

  • 支持多边形和圆形

【RRT】
  • get_adaptive_sample:根据树展尺+障碍密度 条件同时调节采样半径和 goal bias

  • calculate_obstacle_density:定量半径内的 intersect 障碍物数

  • steer:根据障碍密度调整动态步长

  • plan:实际路径规划逻辑


四、📊 性能验证

总进行 80 次路径规划,得到数据统计:

成功率: 93.75%
平均路径长度: 1120.54
平均迭代次数: 198.12
平均计算时间: 0.54s

分析:

  • 成功率高:合理证明自适应采样效果显著

  • 路径长度 & 迭代次数合理

  • 速度快,适合实时场景


五、🎨 动画可视化

增加 matplotlib.animation 代码,每次拼接新节点时动画展示 RRT 树扩展,配合 gif 导出:

QQ录屏20250423212611

import matplotlib.animation as animation

fig, ax = plt.subplots()
env.plot(ax)

lines = []
for node in rrt.tree:
    if node.parent:
        lines.append([[node.x, node.parent.x], [node.y, node.parent.y]])

line_objs = [ax.plot([], [], 'k-')[0] for _ in lines]

def update(i):
    if i < len(lines):
        line_objs[i].set_data(lines[i][0], lines[i][1])
    return line_objs

ani = animation.FuncAnimation(fig, update, frames=len(lines), interval=10, blit=True)
ani.save("rrt_path.gif", writer="pillow")

六、🔍 展望与总结

  • 算法改进的思路简洁而高效

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值