【
两个整数的 汉明距离 指的是这两个数字的二进制数对应位不同的数量。
给你一个整数数组 nums,请你计算并返回 nums 中任意两个数之间 汉明距离的总和 。
示例 1:
输入:nums = [4,14,2]
输出:6
解释:在二进制表示中,4 表示为 0100 ,14 表示为 1110 ,2表示为 0010 。(这样表示是为了体现后四位之间关系)
所以答案为:
HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6
示例 2:
输入:nums = [4,14,4]
输出:4
提示:
1 <= nums.length <= 104
0 <= nums[i] <= 109
给定输入的对应答案符合 32-bit 整数范围
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/total-hamming-distance
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
】
位运算题目里,把复杂度降为 O(n) 的骚操作基本都是写一个 32 次的 for 循环,恰如好多”仅包含字母“的题目的骚操作都是写一个 26 次的 for 循环。
(nums[j] >> i) & 1 : 统计第i位上是否为1.
来自官方题解:
在计算汉明距离时,我们考虑的是同一比特位上的值是否不同,而不同比特位之间是互不影响的。
对于数组{nums}中的某个元素val,若其二进制的第 i位为 1,我们只需统计nums 中有多少元素的第i 位为0,即计算出了val 与其他元素在第i 位上的汉明距离之和。
这些元素在二进制的第 i 位上的汉明距离之和为
c⋅(n−c)
我们可以从二进制的最低位到最高位,逐位统计汉明距离。将每一位上得到的汉明距离累加即为答案。
int totalHammingDistance(int* nums, int numsSize){
int i, j;
int retcnt = 0;
int onecnt = 0;
for (i = 0; i < 32; i++) { // 给定输入符合 32bit范围,那便按位遍历
onecnt = 0;
for (j = 0; j < numsSize; j++) { // 遍历全部数字中全部数字
onecnt += (nums[j] >> i) & 1; // 统计第i位上为1的数有多少个
}
retcnt += onecnt * (numsSize - onecnt); // 统计第i位上的汉明距离
}
return retcnt;
}