LLM基础面

目前的主流的开源体系有哪些

目前 主流的开源模型体系 分三种:

  • 第一种:prefix Decoder系

介绍:输入双向注意力,输出单向注意力
代表模型:ChatGLM、ChatGLM2、U-PaLM

  • 第二种:causal Decoder 系
    介绍:从左到右的单向注意力
    代表模型:LLaMA-7B、LLaMa 衍生物
  • 第三种:Encoder-Decoder
    介绍:输入双向注意力,输出单向注意力
    代表模型:T5、Flan-T5、BART

在这里插入图片描述

prefix Decoder和casual Decoder和Encoder-Decoder的区别是什么

prefix Decoder 和 causal Decoder 和 Encoder-Decoder 区别在于attention mask不同:

  • Encoder-Decoder
    在输入上采用双向注意力,对问题的编码理解更充分
    适用任务:在偏理解的 NLP 任务上效果好
    缺点:在长文本生成任务上效果差,训练效率低
  • causal Decoder
    自回归语言模型,预训练和下游应用是完全一致的,严格遵守只有后面的token才能看到前面的token的规则
    适用任务:文本生成任务效果好
    优点:训练效率高,zero-shot 能力更强,具有涌现能力
  • prefix Decoder:
    特点:prefix部分的token互相能看到,causal Decoder和 Encoder-Decoder 折中;
    缺点:训练效率低

在这里插入图片描述

大模型LLM的训练目标是什么

1.语言模型
根据已有词预测下一个词,训练目标为最大似然函数

在这里插入图片描述

训练效率:Prefix Decoder<Casual Decoder

Causal Decoder 结构会在 所有 token 上计算损失,而 Prefix Decoder 只会在 输出上 计算损失。

去噪自编码器目标函数

在这里插入图片描述

涌现能力是什么原因

根据前人分析和论文总结,大致是2个猜想:

  • 任务的评价指标不够平滑;
  • 复杂任务 vs 子任务,这个其实好理解,比如我们假设某个任务T有5个子任务 Sub-T构成,每个 sub-T 随着模型增长,指标从 40% 提升到 60%,但是最终任务的指标只从 1.1% 提升到了 7%,也就是说宏观上看到了涌现现象,但是子任务效果其实是平滑增长的。

为啥现在的大模型大部分都是Decoder only架构

因为decoder-only结构模型在没有任何微调数据的情况下,zero-shot的表现能力最好。而encoder-decoder则需要在一定量的标注数据上做multitask-finetuning才能够激发最佳性能。目前的Large LM的训练范式还是在大规模语料上做自监督学习,很显然zer0-shot性能更好的decoder-only架构才能更好的利用这些无标注的数据。
大模型使用decoder-only架构除了训练效率和工程实现上的优势外,在理论上因为Encoder的双向注意力会存在低秩的问题,这可能会削弱模型的表达能力。就生成任务而言,引入双向注意力并无实质的好处。而Encoder-decoder模型架构之所以能够在某些场景下表现更好,大概是因为它多了一倍参数。所以在同等参数量、同等推理成本下,Decoder-only架构就是最优的选择了。

大模型LLMS后面跟的175B、60B、54B指的是什么

175B、60B、540B等:这些一般指参数的个数,B是Bilion/十亿的意思,175B是1750亿参数,这是ChatGPT大约的参数规模。

大模型LLMS有什么优点

1**.可以利用大量的无标注数据来训练一个通用的模型,然后再用少量的有标注数据来微调模型,以适应特定的任务**。这种预训练和微调的方法可以减少数据标注的成本和时间,提高模型的泛化能力;
2.可以利用生成式人工智能技术来产生新颖和有价值的内容,例如图像、文本、音乐等。这种生成能力可以帮助用户在创意、娱乐、教育等领域获得更好的体验和效果;
3.可以利用涌现能力(Emergent Capabilities)来完成一些之前无法完成或者很难完成的任务,例如数学应用题、常识推理、符号操作等。这种涌现能力可以反映模型的智能水平和推理能力。

大模型LLMS有什么缺点呢

1.需要消耗大量的计算资源和存储资源来训练和运行,这会增加经济和环境的负担。据估计,训练一个GPT-3模型需要消耗约30万美元,并产生约284吨二氧化碳排放;
2.需要面对数据质量和安全性的问题,例如数据偏见、数据泄露、数据滥用等。这些问题可能会导致模型产生不准确或不道德的输出,并影响用户或社会的利益;
3.需要考虑可解释性、可靠性、可持续性等方面的挑战,例如如何理解和控制模型的行为、如何保证模型的正确性和稳定性、如何平衡模型的效益和风险等。这些挑战需要多方面的研究和合作,以确保大模型能够健康地发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值