LeetCode 53. Maximum Subarray

LeetCode 53. Maximum Subarray

题目描述

给定一个整数数组 nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

样例
输入: [-2,1,-3,4,-1,2,1-5,4],
输出:6
进阶

如果你已经实现复杂度为 O ( n ) O(n) O(n)的解法,尝试使用更精妙的分治法求解。

算法1

(动态规划)O(n)
1.设 f ( i ) f(i) f(i)表示以第 i i i个数字为结尾的最大连续子序列的总和是多少。
2.初始化 f ( 0 ) f(0) f(0) = nums[0]。
3.转移方程 f ( i ) = m a x ( f ( i − 1 ) + n u m s [ i ] , n u m s [ i ] ) f(i) = max(f(i-1)+nums[i],nums[i]) f(i)=max(f(i1)+nums[i],nums[i])。意味当前有两种决策,一种是将第i个数字和前面的数字拼接起来;另一种是第i个数字单独作为一个新的子序列开始。
4.最终答案为 a n s = m a x ( f ( k ) ) , 0 < = k < n ans = max(f(k)),0<=k<n ans=maxfk0<=k<n

时间复杂度

状态数为 O ( n ) O(n) O(n),转移时间为 O ( 1 ) O(1) O1,故总时间复杂度为 O ( n ) O(n) O(n)

空间复杂度

需要 O ( n ) O(n) O(n)的空间储存状态

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size(), ans;
        vector<int> f(n);
        f[0] = nums[0];
        ans = f[0];

        for (int i = 1; i < n; i++) {
            f[i] = max(f[i - 1] + nums[i], nums[i]);
            ans = max(ans, f[i]);
        }

        return ans;
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值