这里所谓的“光棍”,并不是指单身汪啦~ 说的是全部由1组成的数字,比如1、11、111、1111等。传说任何一个光棍都能被一个不以5结尾的奇数整除。比如,111111就可以被13整除。 现在,你的程序要读入一个整数x
,这个整数一定是奇数并且不以5结尾。然后,经过计算,输出两个数字:第一个数字s
,表示x
乘以s
是一个光棍,第二个数字n
是这个光棍的位数。这样的解当然不是唯一的,题目要求你输出最小的解。
提示:一个显然的办法是逐渐增加光棍的位数,直到可以整除x
为止。但难点在于,s
可能是个非常大的数 —— 比如,程序输入31,那么就输出3584229390681和15,因为31乘以3584229390681的结果是111111111111111,一共15个1。
输入格式:
输入在一行中给出一个不以5结尾的正奇数x
(<1000)。
输出格式:
在一行中输出相应的最小的s
和n
,其间以1个空格分隔。
输入样例:
31
输出样例:
3584229390681 15
这个题目是一个有趣的数学和编程问题,它涉及到找出一个特殊的数学模式。下面是对题目的分析:
题目概述
- 目标:给定一个正奇数
x
,找到最小的整数s
和n
,使得s
乘以x
产生一个只包含数字1的数(光棍数),而n
是这个光棍数的位数。 - 条件:输入的数
x
是一个不以5结尾的正奇数。
分析
-
光棍数的性质:光棍数是一个有趣的数学概念,它由连续的数字1组成,比如1、11、111等。这类数字在数论中有独特的性质和应用。
-
寻找规律:题目的核心在于找到一个光棍数,它是给定数
x
的倍数。这意味着我们需要找到一个数s
,使得x * s
是一个光棍数。 -
计算方法:可以通过逐步增加光棍数的位数来检查每个光棍数是否能被
x
整除。这是一个迭代过程,我们从最小的光棍数1开始,如果它不能被x
整除,就移动到下一个光棍数(比如11、111等)。 -
编程实现:
-
函数定义:我们需要一个函数来找到最小的s和n。这个函数接收一个整数
x
作为参数。 -
变量初始化:我们初始化两个变量,
s
和n
,分别用来存储当前的光棍数和它的位数。初始时,s
设为1,n
设为1,因为最小的光棍数是1,位数也是1。 -
循环结构:使用一个
while
循环来逐渐增加光棍数的位数,直到找到一个能被x
整除的光棍数。在每次循环中,我们都会检查x
是否能整除s
。更 -
新光棍数:如果
x
不能整除s
,我们就把s
更新为下一个光棍数。这可以通过将s
乘以10然后加1来实现,同时n
(位数)增加1。 -
返回结果:一旦找到能被
x
整除的光棍数,函数就返回s
和n
。
-
下面是C语言实现的代码:
#include <stdio.h>
// 函数来找到最小的s和n
void find_smallest_s_and_n(int x, long long *s, int *n) {
*s = 1;
*n = 1;
while (*s % x != 0) {
*s = *s * 10 + 1;
(*n)++;
}
}
int main() {
int x;
long long s;
int n;
// 从用户那里读取x
printf("请输入一个正奇数x(不以5结尾,小于1000): ");
scanf("%d", &x);
// 调用函数
find_smallest_s_and_n(x, &s, &n);
// 打印结果
printf("最小的s和n分别是: %lld %d\n", s, n);
return 0;
}
在这个程序中,find_smallest_s_and_n
函数通过引用(即通过指针)返回两个值s
和n
。main
函数从用户那里读取输入值x
,然后调用find_smallest_s_and_n
来计算s
和n
,最后打印这两个值。
请注意,为了存储可能非常大的s
值,我们使用了long long
类型。这是因为s
的值可能远远超过标准整型的上限。