金字塔

WIN32汇编、C/C+、MFC、Arduino、OI/ACM、PS...

最长上升子序列的O(nlgn)解法

感觉网上说的太复杂了……

今天我突然想明白了,写起来不过三行代码而已。

 

首先换一种状态表示:设f[i]为长度为i的上升子序列中末尾元素的最小值,
初始化f[0]=INT_MIN,f[1~N]=INT_MAX
然后对于每个元素,更新集合 { f[i] | f[i-1]<a[j] } 中的所有f[i]的最小值,
以上方法O(n^2)


由于f[i-1]<a[j](上面集合中的条件),
所以用于更新的a[j]一定比更新上一位置的那玩意大,所以f数组单调递增,
前面比a[j]小的更新不走,只有更新中间那个位置的,
或者说对于一个a[j],只可能更新一个,就是上一个还小的,下一个就比它大的那个,

用二分优化更新过程~~O(nlgn)

实现比O(n^2)的方法还简单!只需要三行代码!~~~~~~~~
fill(f,f+n,INT_MAX);
for(int i=0;i<n;++i)
    *lower_bound(f,f+n,a[i])=a[i];

阅读更多
版权声明:本文为本人原创,允许转载,但转载请注明出处:http://blog.csdn.net/kingpharaoh https://blog.csdn.net/kingpharaoh/article/details/17100249
个人分类: OI/ACM
想对作者说点什么? 我来说一句

最长上升子序列nlgn源码

2008年10月18日 972B 下载

没有更多推荐了,返回首页

不良信息举报

最长上升子序列的O(nlgn)解法

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭