Tensorflow图片鉴黄 完整项目

本文介绍了一个基于Tensorflow的图片鉴黄项目,通过TornadoServer和TFServer实现图像上传、存储和评分。用户上传的图片会被保存并由Tensorflow模型打分,分为性感、淫秽、卡通淫秽、中性和手绘漫画五个类别。项目代码包括TornadoServer.py、TFServer.py和UploadFile.html。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Tensorflow初级教程》
项目源码位置

效果展示

先看下效果:
这里通过网页上传图片,服务器接收到图片后保存到本地,再将图片路径传给Tensorflow服务,Tensorflow服务进行图片打分,再将分值返回到网页。

上传图片

在电脑本地选择您的图片,目前不支持网页链接。如图(1),选择了一个本地文件,点击“submit”按钮即可。
图片(1)
在这里插入图片描述

给图片打分

Tensorflow服务将评分返回给网页,网页进行显示。
图片(2)
在这里插入图片描述
目前Tensorflow模型里只有4个分类,分别是sexy(性感)、porn(真人淫秽)、hentai(卡通淫秽)、neutral(中性事物)、drawing(手绘漫画)
这个图片sexy打分达到了82.74%很明显属于性感类的图片了。其他的图片大家可以在服务搭建起来后自行测试。

开发情景

这个模型通过 https://github.com/alexkimxyz/nsfw_data_scraper 这个开源项目里的图片训练而成,训练后的模型放到了inception_model目录中,大家可以直接拿来使用。训练过程略过吧,要是讲的话就太多了。

项目使用说明

项目里的三个重要文件

TornadoServer.py

这个是python的Tornado服务器,用于搭建服务器。

TFServer.py

这个是Tensorflow服务,用于对图片打分。

UploadFile.html

这个就是网站首页了。如图(1)所示。

运行方式

第一步,需要将Tensorflow服务运行起来,执行TFServer.py这个文件。
第二步,启动Web服务器,执行TornadoServer.py这个文件。
第三步,在浏览器中打开http://127.0.0.1:8888/file这个地址,就是图片(1)显示的内容了。

上传图片的存储

当用户上传图片后,TornadoServer会将图片存在本地,不同的IP地址放在不同的文件夹中,文件以上传的时间点重新命名。
在这里插入图片描述
如图可见,192.168.10.19这个IP上传了多张图片,图片的名称按照时间点重新进行了命名。

代码讲解

TornadoServer

  def post(self):
        # 文件的暂存路径
        upload_path = os.path.join(os.path.dirname(__file__) + '/static', str(self.request.remote_ip))
        if(os.path.exists(upload_path) == False):
            os.makedirs(upload_path)

        file_metas = self.request.files['file']    #提取表单中‘name’为‘file’的文件元数据
        fileData = file_metas[0]
        fileName = fileData['filename']
        arr = os.path.splitext(fileName)
        extFileName = arr[len(arr) - 1]

        fileType = fileData['content_type']
        print(fileName)
        print(fileType)
        #这里判断图片是否为jpeg格式的文件,将其他格式的图片进行了过滤。
        if (operator.eq(fileType, 'image/jpeg') == False):
            self.write('请上传JPEG格式的图片!')
            return
        else:
            fileNameTime = self.getFileName()
            fileName = fileNameTime + extFileName
            fileFullName = os.path.join(upload_path, fileName)
            #将用户上传的图片进行本地化存储。
            with open(fileFullName, 'wb') as up:
                 up.write(fileData['body'])
            #self.write('finished!')

            #通过socket管道将图片路径传给Tensorflow服务器
            client = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
            client.connect("/tmp/tfserver.sock")
            client.send(bytes(fileFullName, 'utf-8'))

            #接收Tensorflow服务的打分数据
            resultbyte = client.recv(1024)
            resultStr = str(resultbyte, encoding="utf-8")

            n = fileFullName.find(staticFilePath)
            imagePath = fileFullName[n:]

            #将图片源文件和打分数据同时进行显示。
            htmlSource = '<!DOCTYPE html> ' \
                       + '<head> <meta charset="UTF-8"> </head> ' \
                       + '<body> ' \
                       + '<p> ' +  resultStr  + '</p>' \
                       + '<img src="' + imagePath + '"/>' \
                       + '</body>' \
                       + '</html>'
            print(htmlSource)
            self.write(htmlSource)
        return

TFServer

with tf.Session() as sess:
    softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
    while True:
        #这里等待接收用户的图片信息。
        connection, address = TFServer.accept()
        rec = connection.recv(1024)
        picPath = str(rec, encoding="utf-8")
        print (picPath)
        image_data = tf.gfile.GFile(picPath, 'rb').read()
        predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data})
        predictions = np.squeeze(predictions)

        top_k = predictions.argsort()[::-1]
        result = ''
        for node_id in top_k:
            human_string = id_to_string(node_id)
            score = predictions[node_id]
            buf = ('%s (score = %.2f%%) \n' % (human_string, score*100))
            result = result + buf
        print(result)
        #将打分结果返回给提交打分申请的客户端
        connection.send(bytes(result, 'utf-8'))
    connection.close()

这里是部分的代码讲解。如果有那些问题,欢迎给我留言。

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值