论文笔记-MineGAN: effective knowledge transfer from GANs to target domains with few images

  • 论文信息

    • 标题: MineGAN: effective knowledge transfer from GANs to target domains with few images
    • 作者:Yaxing Wang(yaxing@cvc.uab.es), Abel Gonzalez-Garcia(agonzalez@cvc.uab.es), David Berga(dberga@cvc.uab.es), Luis Herranz(lherranz@cvc.uab.es), Fahad Shahbaz Khan(joost@cvc.uab.es), Joost van de Weijer( fahad.khan@liu.se)
    • 机构:Computer Vision Center, Universitat Aut`onoma de Barcelona, Spain
  • 代码链接

    • https:// github.com/yaxingwang/MineGAN
  • 论文主要贡献

    • 引入新的挖掘网络用于探索预训练网络中的隐空间数据分布,用于指导预训练模型生成只有少量数据决定的目标数据分布
    • 第一次提出将多个GAN的知识迁移到一个单独的生成模型中
    • 实验结果显示,从非条件、条件、多GAN等条件的知识迁移都比现有的其他方法效果好
  • 论文要点翻译

    • 摘要
      • DNN的特性之一:将一个domain学习的知识迁移到其他相关domain,因此有的domain虽然训练数据相对较少,但是依然可以训练得到高质量的网络,这个特性通常在判别网络中已经研究较多,但是生成网络中还没有研究得十分透彻
      • 由于GAN的训练对于计算资源和数据收集的要求都相对较高,因此,能对预训练的模型加以复用是一个很有价值的研究目标
      • 本文提出的迁移方法,基于对目标domain最有价值的数据表述的挖掘,以此进行生成模型的知识迁移
      • 本文方法主要通过一个挖掘网络实现,该网络识别每个预训练的GAN中对生成目标domain数据贡献最大的生成分布
      • 挖掘使得GAN的采样朝着隐空间中最适合的区域进行,使得后验调优更有实践可能性,并且避免了模式崩塌等问题
      • 实验结果证明MineGAN能够有效迁移学习到的知识
    • 引言
      • GAN可以学习到图像数据集中潜在的复杂的分布,可以用于生成高质量、真实性强的图像,在很多图像相关领域得以运用
      • 高质量的GAN通常需要大量的训练数据和训练时间,因此如果能够有效利用高质量的预训练GAN,能够从中提取得到预训练模型的数据分布,能够把这些GAN和其他模型组合调整得到目标domain的数据分布是很有价值的研究目标
      • 利用有限数据进行domain的知识迁移已经在判别式网络中得以研究,使得高质量网络得以有效复用,但是对于生成式模型的知识迁移的研究仍然没有得到太多关注,主要由于生成式模型的知识迁移难度较大。【33】利用预训练的生成式模型研究精调,并证明这个预训练网络可以促进少数据的心的domain,【25】提出这个可能引起的模式崩塌问题,认为应当减少模型的可训练参数,仅对BN的相关可学习参数进行调整
      • 本文通过调整预训练的生成式模型,解决知识迁移的问题,用于只有小数量目标样本的情况下的目标图像的生成。主要引入对GAN的挖掘的过程,即挖掘网络miner network,从多个预训练的GAN中将多变量的正态分布转换成预训练模型的输入空间的分布,使得生成的图像能有效组合目标domain中的知识。miner网络比预训练的GAN参数少得多,因而过拟合的问题出现的可能性较小,“挖掘”的步骤将对预训练的GAN进行挖掘,探索隐空间区域中的样本,找到跟目标domain更为接近的数据样本的特征空间,因此模型可以保留适应能力的同时避免过拟合
      • MineGAN可以有效从多个预训练GAN中迁移特征,能够同时利用多个源的信息进行聚合,生成与目标domain最接近的图像,网络通过选择性的后向传播过程进行训练
    • 相关工作
      • GAN的相关工作:典型的GAN的工作原理、为了解决GAN的模式崩塌问题和训练稳定性问题提出的一系列解决方案、为了生成更多更高质量的图像提出的渐进GAN、BigGan等方案
      • GAN的迁移学习:知识迁移在CV领域的判别式网络中取得的进展,但是生成模型中的知识迁移探索仍然是不足的。【33】研究了对预训练GAN的精调,使得模型可以用于改进少量样本的目标domain的性能,但是方法存在模式崩塌和过拟合的问题;【25】提出只更新模型中的BN参数,降低了模式崩塌的可能性,但是模型的性能受到了影响
        • 本文提出的MineGAN学习自动调整输入分布,考虑从多个预训练GAN中迁移知识到单个目标domain
      • 迭代图像生成
    • 方法
      • 条件假设:已经有一个或者多个预训练GAN,希望使用这些GAN中的知识训练小样本目标domain的GAN
      • p d a t a ( x ) p_{data}(x) pdata(x) 表示真实数据集合 D D D中的样本 x x x的分布, p z ( z ) p_z(z) pz(z)表示输入噪声变量的先验分布,生成网络 G G G根据噪声输入得到输出的生成分布 p G ( x ) p_G(x) pG(x)尽可能与真实数据分布相似,生成网络的训练过程通过GAN中的G和D之间的博弈,当达到平衡时即可实现
      • [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wkQ5uKar-1596644565934)(C:\Users\Kingsley\AppData\Roaming\Typora\typora-user-images\image-20200727092042857.png)]
      • 目标:利用一个真实图像集合 D T D_T DT 近似目标真实数据的分布 p d a t a T ( x ) p_{data}^T(x) pdataT(x),利用源数据训练 p g ( x ) p_g(x) pg(x) 拟合真实分布 p d a t a ( x ) p_{data}(x) pdata(x),挖掘操作通过在 p g ( x ) p_g(x) pg(x) 中寻找能够更好地近似目标数据分布 p d a t a T ( x ) p_{data}^T(x) pdataT(x),以生成新的生成分布 p g T ( x ) p_g^T(x) pgT(x),这个过程保持 G 固定
      • 为了找到这些区域,挖掘的过程实际上是找到一个新的先验分布 p z T ( z ) p_z^T(z) pzT(z) 使得据此生成的样本 G ( z ) G(z) G(z) 能够拟合接近目标数据分布 p d a t a T ( x ) p_{data}^T(x) pdataT(x),实现过程中,提出了新的 GAN 组件:挖掘网络 M,由小的多层感知机组成,目标在于将原来的输入噪声 u ∼ p z ( u ) u \sim p_z(u) upz(u) 转换成新的更适合识别目标数据分布的先验变量
      • 方法的两个阶段:(1)MineGAN,使得 G 的隐空间能够找到目标分布的适合的区域;(2)更新 G 的权重
      • M 作为输入噪声和生成网络之间的接口,生成网络训练中保持固定,为了生成图像,首先在 p z ( u ) p_z(u) pz(u) 上采样噪声 u u u ;然后通过 M 将噪声 u 转换成 G 的输入噪声,即得到 G(M(u)), 对抗训练使得生成图像和真图像不可分
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值