2021/8/10补题A - Min Difference

题目大意:

给定数组a和数组b,数组a长度为n,数组b长度为m,你可以从数组a和数组b中各选一个数,问这两个数差值的绝对值最小是多少。

题解:

1.暴力的方法:

直接二重循环枚举每一个数对,复杂度是O(nm),会超时。

2.双指针?

可以先将a和b数组排序,然后用两个指针i和j分别指向a[0]和b[0],
循环过程中保证i < n且j < m。
如果abs(a[i] - b[j])比记录的最小值小,就更新当前的最小值。
如果a[i] > b[j],就j ++,因为如果i ++,差值只会越来越大。
同理如果a[i] < b[j]就i ++。
如果a[i] == b[j],那么最小差就是0,直接退出循环,因为最小差不会小于0。
这样我们只用了一重循环,O(n)的时间复杂度就可以实现最小差的计算。
直接复制会超时,改用c++,sort函数排序就ac了

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
void quick_sort(long long int nums[],long long  int l,long long  int r)
{
    if (l+1>= r)
    {
        return;
    }
    int first = l, last = r - 1, key = nums[first];
    while (first < last)
    {
        while(first < last && nums[last] >= key)
        {
            --last;
        }
        nums[first] = nums[last];
        while (first < last && nums[first] <= key)
        {
            ++first;
        }
        nums[last] = nums[first];
    }
    nums[first] = key;
    quick_sort(nums, l, first);
    quick_sort(nums, first + 1, r);
}
int main()
{
    int n,m;
    scanf("%d %d",&n,&m);

    long long  int a[n+1];
    long long  int b[m+1];
    long long  int i,j,t;
    for(i=0; i<n; i++)
    {
        scanf("%lld",&a[i]);
    }
    quick_sort(a,0,n);

    for(i=0; i<m; i++)
    {
        scanf("%lld",&b[i]);
    }
    quick_sort(b,0,m);

    long long mini=abs(a[0]-b[0]);
     for(i=0,j=0;i<n&&j<m;)
     {
         t=abs(a[i]-b[j]);
         if(t<mini)
         {
             mini=t;
         }
         if(mini==0) break;
         if(a[i]<b[j]) i++;
         else j++;
     }
     printf("%d\n",mini);

    return 0;
}

优化查询

可以手写一个左闭右开的二分,
也可以使用库函数lower_bound,
时间复杂度变O(nlogn)

原文链接:https://blog.csdn.net/Edviv/article/details/119322728

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string>
#include <set>
using namespace std;
const int maxn = 2e5 + 7;
int a[maxn], x;
set<int> s;
int main()
{
    int n, m;
    scanf(" %d %d",&n,&m);
    for(int i = 0; i < n; i++) 
        scanf(" %d",&a[i]);
    sort(a,a+n);
    int ansm = 0x3f3f3f3f, t;
    for(int i = 0; i < m; i++) 
    {
        scanf(" %d",&x);
        int idx = lower_bound(a, a + n, x) - a;
        for(int j = idx - 1; j <= idx; j++)
            if(j < n && j >= 0) ansm = min(ansm,abs(x-a[j]));
    }
    printf("%d\n",ansm);
    return 0;
}


3. 所有元素打上标签扔进一个数组(和1异曲同工)

解析:要取得最小的差,显然作差的两个数要足够相近。
把A的所有元素和B的所有元素打上标签扔进一个数组里排序,然后从左往右把相邻的标签不同的数字的差的绝对值作为答案记录,并找到其最小值。

原文.

#include <bits/stdc++.h>
using namespace std;
int n, m;
struct node
{
    int num;	//数值
    int co;	//来自哪个数组,1为A,-1为B
} e[3000000];
int ans;
int la,lb;
bool cmp(node a,node b)
{
    return a.num<b.num;
}
int main()
{
    la=-(1<<30);	//上一个来自A的数
    ans=1<<30;		//所求差的绝对值的最小值
    lb=la;			//上一个来自B的数
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", &e[i].num);
        e[i].co=1;
    }
    for (int i = 1; i <= m; i++)
    {
        scanf("%d", &e[n+i].num);
        e[n+i].co=-1;
    }
    sort(e+1,e+1+m+n,cmp);			//排序

    for (int i = 1; i <= m+n; i++)
    {
       if(e[i].co==1)
       {
            la=e[i].num;
            ans=min(ans,abs(e[i].num-lb));
       }
       if(e[i].co==-1)
       {
            lb=e[i].num;
            ans=min(ans,abs(e[i].num-la));
       }

    }
    cout << ans << endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值