__kingzone__的专栏

学习数据挖掘~

学习SVM(四) 理解SVM中的支持向量(Support Vector)

学习SVM(四) 理解SVM中的支持向量(Support Vector) 版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/chaipp0607/article/details/73716226 学习SVM(一) SVM模型训练与分类的OpenCV实现...

2018-12-08 22:59:32

阅读数 1143

评论数 1

谷歌开源TF-Ranking可扩展库,支持多种排序学习

铜灵 发自 凹非寺   量子位 出品 | 公众号 QbitAI 最近,谷歌新开源了可扩展的TensorFlow库TF-Ranking,可用于学习排序。所谓学习排序,也就是对项目列表进行排序,从而将整个功能最大化的过程。   TF-Ranking中有一套完整的学习排序的算法,包含成对或列表...

2018-12-07 13:50:28

阅读数 261

评论数 0

从ctr预估问题看看f(x)设计—DNN篇

从ctr预估问题看看f(x)设计—DNN篇 lambdaJi how to model anything 已关注 吴海波 等 223 人赞了该文章 上接机器学习模型设计五要素,这一篇接着讲模型结构设计 从ctr预估问题看看f(x)设计—LR篇提到ctr预估的f(x)可以分 大规模...

2018-11-13 11:20:38

阅读数 164

评论数 0

【论文阅读笔记】Deep Learning based Recommender System: A Survey and New Perspectives

【论文阅读笔记】Deep Learning based Recommender System: A Survey and New Perspectives 2017年12月04日 17:44:15 cskywit 阅读数:1116更多 个人分类: 机器学习 版权声明:本文为博主原创文章,未经...

2018-11-09 12:00:13

阅读数 102

评论数 0

N-gram语言模型 & Perplexity & 平滑

N-gram语言模型 & Perplexity & 平滑 2018年04月03日 18:16:20 qjf42 阅读数:646 版权声明:本文为博主原创文章,欢迎交流分享,未经博主允许不得转载。 https://blog.csdn.net/qjf...

2018-11-07 12:16:19

阅读数 1027

评论数 0

炼丹术的终结——神经网络结构搜索之一

炼丹术的终结——神经网络结构搜索之一 2018年04月10日 00:23:14 张雨石 阅读数:2820 标签: 强化学习深度学习网络结构搜索RLNAS 更多 个人分类: 论文笔记 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xinzha...

2018-11-07 12:15:13

阅读数 85

评论数 0

机器学习(二):线性回归、梯度下降、正规方程组

线性回归(Linear Regression) 1 最小二乘法(Least Mean Squares) 梯度下降(Gradient Descent) 2 正规方程组(Normal Equations) 3 极大似然法 4 Locally weighted linear regressio...

2018-10-12 23:05:38

阅读数 104

评论数 0

sklearn与Keras的verbose相关源码

  GridSearchCV的verbose参数 grid_search.py 813行 838行 555行 if self.verbose > 0: if isinstance(parameter_iterable, Sized): n_candida...

2018-10-12 23:02:32

阅读数 148

评论数 0

不均衡学习的抽样方法

通常情况下,在不均衡学习应用中使用抽样方法的目的就是为了通过一些机制改善不均衡数据集,以期获得一个均衡的数据分布。 研究表明,对于一些基分类器来说,与不均衡的数据集相比一个均衡的数据集可以提高全局的分类性能。数据层面的处理方法是处理不均衡数据分类问题的重要途径之一,它的实现方法主要分为对多数类样...

2018-08-23 21:57:17

阅读数 1094

评论数 0

在分类中如何处理训练集中不平衡问题

原文地址:一只鸟的天空,http://blog.csdn.net/heyongluoyao8/article/details/49408131 在分类中如何处理训练集中不平衡问题   在很多机器学习任务中,训练集中可能会存在某个或某些类别下的样本数远大于另一些类别下的样本数目。即类别不平衡,为...

2018-08-23 21:50:56

阅读数 108

评论数 0

在分类中如何处理训练集中不平衡问题

原文地址:一只鸟的天空,http://blog.csdn.net/heyongluoyao8/article/details/49408131 在分类中如何处理训练集中不平衡问题   在很多机器学习任务中,训练集中可能会存在某个或某些类别下的样本数远大于另一些类别下的样本数目。即类别不平衡,为...

2018-08-23 21:50:56

阅读数 152

评论数 0

Python机器学习Numpy, Scipy, Pandas, Scikit-learn, Matplotlib, Keras, NN速查手册

Python机器学习Numpy, Scipy, Pandas, Scikit-learn, Matplotlib, Keras, NN速查手册   Numpy SciPy Scikit-Learn Pandas Keras Matplotlib Neural...

2018-08-19 15:21:52

阅读数 217

评论数 0

【更新于12.29】深度学习论文汇总

本博客用于记录自己平时收集的一些不错的深度学习论文,近9成的文章都是引用量3位数以上的论文,剩下少部分来自个人喜好,本博客将伴随着我的研究生涯长期更新,如有错误或者推荐文章烦请私信。 深度学习书籍和入门资源 LeCun Y, Bengio Y, Hinton G. Deep learning[...

2018-08-08 10:43:38

阅读数 342

评论数 2

玩转Fasttext

转自:http://albertxiebnu.github.io/fasttext/   Fasttext是Facebook AI Research最近推出的文本分类和词训练工具,其源码已经托管在Github上。Fasttext最大的特点是模型简单,只有一层的隐层以及输出层,因此训练速度非常快...

2018-08-05 11:37:09

阅读数 3236

评论数 2

NLP︱高级词向量表达(二)——FastText(简述、学习笔记)

FastText是Facebook开发的一款快速文本分类器,提供简单而高效的文本分类和表征学习的方法,不过这个项目其实是有两部分组成的,一部分是这篇文章介绍的  fastText 文本分类(paper:A. Joulin, E. Grave, P. Bojanowski, T. Mikolov,...

2018-08-05 11:11:28

阅读数 156

评论数 0

Learning to Rank 简介

去年实习时,因为项目需要,接触了一下Learning to Rank(以下简称L2R),感觉很有意思,也有很大的应用价值。L2R将机器学习的技术很好的应用到了排序中,并提出了一些新的理论和算法,不仅有效地解决了排序的问题,其中一些算法(比如LambdaRank)的思想非常新颖,可以在其他领域中进行...

2018-08-03 13:55:52

阅读数 75

评论数 0

keras参数调优

原文:https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/ 本文主要想为大家介绍如何使用scikit-learn网格搜索功能,并给出一套代码实例。你可以将...

2018-07-30 21:59:26

阅读数 867

评论数 0

十、如何选择神经网络的超参数

本博客主要内容为图书《神经网络与深度学习》和National Taiwan University (NTU)林轩田老师的《Machine Learning》的学习笔记,因此在全文中对它们多次引用。初出茅庐,学艺不精,有不足之处还望大家不吝赐教。   在之前的部分,采用梯度下降或者随机梯度下降...

2018-07-30 21:46:36

阅读数 2346

评论数 0

神经网络结构设计指导原则

下面这个神经网络结构设计指导原则是Andrew NG在coursera的ML课程中提到的: 输入层:神经元个数=feature维度 输出层:神经元个数=分类类别数 隐层:  默认只用一个隐层 如果用多个隐层,则每个隐层的神经元数目都一样 隐层神经元个数越多,分类效果越好,但计算量会...

2018-07-30 21:23:21

阅读数 380

评论数 0

神经网络中隐层数和隐层节点数问题的讨论

神经网络中隐层数和隐层节点数问题的讨论 一 隐层数         一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数...

2018-07-30 20:24:45

阅读数 21054

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭