模式识别
kipykspy
这个作者很懒,什么都没留下…
展开
-
PmH(Partition Min-Hash for Partial Duplicate Image Discovery)
<br />PmH将图像分块(可以overlop,需要overlop参数和partition参数),分别建立hash表,从而提高速度与命中率:<br />(若未分块时hash table的sketch数为n,分为p块,为每块建立n/p个sketches,然后将所有sketches连接起来作为整幅图的hash table)<br />1. 由于每块特征变少,所以提高速度<br />2. 根据case a b c d的分析,可得case a d提高了命中率,b c命中率不变,总体上提高了命中率。<br /> <原创 2010-11-04 19:53:00 · 1121 阅读 · 0 评论 -
GmH (Geometric min-Hashing: Finding a (Thick) Needle in a Haystack)
<br />主要思想:<br /> <br />取一个特征集合,该特征集合中的特征满足:<br /> 1. 特征到words为一一映射。(方便获取该特征的位置,尺度,方向等没有表示在128维描述子中的信息)<br /> 2. 并且至少有三个与其scale相似的特征在其周围。<br /> <br />随机取该集合中的一个特征(words)为secondary features的中心特征。<br /> <br />取在坐标位置上和scale上与中心特征差别不大的所有聚类位置为不同words的特征(w原创 2010-11-04 19:42:00 · 1075 阅读 · 1 评论 -
min-hash
min-hash用来做partial duplicate image discoverymin-hash中h(I)返回的值是,二值化bag of words向量为1的位置所对应的最小值。如:bit map of bag of words: 0 1 0 1 0 1 ....hash() : 0.1 0.3 0.2 0.5 0.15 0.6 ....则h() = 0.3(第二列对应的)1次min-hash(即使用一个hash函数,h(I)原创 2010-11-04 20:00:00 · 3371 阅读 · 0 评论 -
Semi-Local Affine Parts for Object Recognition
<br />一 计算Hypotheses<br /> <br />1. 提取椭圆仿射平面。<br />2. 用两种描述子来提取2幅图像中椭圆仿射平面的特征。<br />3. 根据两种特征欧氏距离最近的原则来寻找可能匹配的<br />4. 将一个椭圆平面及其邻域的另外两个椭圆平面组成triple。(另外两个椭圆平面取哪两个?随即取吗?如果两幅图都随机取下面仿射的时候岂不很麻烦?)<br />5. 根据第一个椭圆平面,找到它在另一幅图中可能匹配的椭圆平面。<br />6. 以triple为单位,将其中一幅图的t原创 2010-11-04 20:06:00 · 597 阅读 · 0 评论