codeforces2016

来源:codeforces405B

这个题目一开始没有想到有O(n)的解法,有点撒。。。

是这样,我们从后向前看,当然也有向后,先如果我们遇到.,那么用一个数记下来+1,如果我们遇到L,则说明,前面的都是站立的,但是我们遇到一个R,那么需要找前面是否有过一个L,有的话就可以站立t%2,最后部分,如果前面有一个L,则是全部倒掉的。。。

代码:

#include <iostream>
#include <cstdio>

using namespace std;
const int MAXN=3000+10;
char ch[MAXN];
int main(){
	int n;
	cin>>n;
	for(int i=0;i<n;i++){
        cin>>ch[i];
	}
	int ans=0;
	int d=0;
	char x;
	for(int i=n-1;i>=0;i--){
        if(ch[i]=='.')d++;
        else if(ch[i]=='L'){
            ans+=d;
            d=0;
            x=ch[i];
        }
        else {
            if(x=='L')
                ans+=(d%2);
            d=0;
            x='R';
        }
	}
	if(x!='L')
        ans+=d;
	cout<<ans<<endl;
	return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值