一、稀疏数组是什么?
在矩阵中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律时,则称该矩阵为稀疏矩阵;与之相反,若非0元素数目占大多数时,则称该矩阵为稠密矩阵。定义非零元素的总数比上矩阵所有元素的总数为矩阵的稠密度。
我们开发五子棋过程中,棋子使用2种不同的数字来表示,使用二维数组在存储棋牌上每个位置的坐标。假设棋盘无线大 的话,创建二维数组也就要接近无限大。显然这个需求难以只是用二维数组存储坐标信息,其次游戏性能也就下降。因为只有下过子的地方才存储不用的值,其他统一是用0表示。
那么稀疏数组就起到很好的作用了。在这里稀疏数组将大棋盘缩小成 “小棋盘”,只存储不等于0的信息,这样减少了存储0的空间,达到优化的作用
二、稀疏数组转换思路
1.二维数组转稀疏数组
思路:
1.遍历 原始数组,得到有效数据的个数count
2.根据count就可以创建 稀疏数组new int [count] [3]
3.将二维数组的有效数据存入稀疏数组
实现代码
//创建原始的二维数组8x8
//0表示没有棋子 1表示黑子 2表示白子
int chess[][]=new int[8][8];
chess[1][2]=1;
chess[2][3]=2;
chess[2][1]=1;
//打印原始的二维数组
System.out.println("原始的二维数组");
for (int[] ints : chess) {//先取到每一行(一个数组)
for (int i = 0; i < ints.length; i++) {
System.out.print(ints[i]+" ");
}
System.out.println();
}
//然后再便利出二维数组有多少个非0的数
int count=0;
for (int i = 0; i <chess.length ; i++) {
for (int j = 0; j < chess[i].length; j++) {
if(chess[i][j]!=0){
count++;
}
}
}
System.out.println("该二维数组一共:"+count+"个非0数"); //count为了统计多少个非0的数(也就是多少个棋子)
输出结果:
//创建稀疏数组并且赋值
int arry[][]=new int[count+1][3];
arry[0][0]=8;
arry[0][1]=8;
arry[0][2]=count; //二维数组一共有count个数
//将二维数组的数据放入稀疏数组里面
int num=0;
for (int i = 0; i <chess.length ; i++) {
for (int j = 0; j < chess[i].length; j++) {
if(chess[i][j]!=0){
num++;
arry[num][0]=i;
arry[num][1]=j;
arry[num][2]=chess[i][j];
}
}
}
//打印稀疏数组
System.out.println("稀疏数组结果.......");
for (int[] ints : arry) {
for (int i = 0; i < ints.length; i++) {
System.out.print(ints[i]+"\t");
}
System.out.println();
}
输出结果:
2.稀疏数组转二维数组
思路:
1.先读取稀疏数组的第一行,根据第一行的数据创建原始的二维数组
2.在读取稀疏数组后几位的数据,并赋给原始的二维数组
实现代码
//将稀疏数组转换成二维数组
int aa[][]=new int[arry[0][0]][arry[0][1]]; //初始化的时候二维数组的初始值 全为零
int row=0;
int col=0;
int value=0;
for (int i = 1; i < arry.length; i++) {
for (int j = 0; j <arry[i].length ; j++) {
if(j==0){
row=arry[i][j];
}else if(j==1){
col=arry[i][j];
}else {
value=arry[i][j];
}
}
aa[row][col]=value;
}
System.out.println("从稀疏数组变为二维数组之后....");
for (int[] ints : aa) {
for (int i = 0; i <ints.length ; i++) {
System.out.print(ints[i]+" ");
}
System.out.println();
}
输出结果: