15、绝对忆阻器范德波尔 - 达夫宁电路中的极端多稳定性、隐藏混沌吸引子和振幅控制

绝对忆阻器VdPD电路的多稳定性与混沌控制

绝对忆阻器范德波尔 - 达夫宁电路中的极端多稳定性、隐藏混沌吸引子和振幅控制

1. 引言

范德波尔 - 达夫宁(VdPD)电路是一种著名的混沌电路,与蔡氏电路等价。它由五个并联元件组成,包括两个电容器、一个电感器、一个电阻器和一个由一组二极管和运算放大器构成的有源非线性电阻器。VdPD 电路由一个常见的非线性微分方程控制,可用于描述工程、生物学、物理学、神经学等领域中许多有趣的物理系统。

为了在 VdPD 电路中获得有趣的动力学特性,其实现方式在至少两种物理上有趣的情况下进行了修改:
- 在其电感器上串联一个电阻器,并在运算放大器中加入偏置电流。
- 在其电感器上并联一个电阻器。

自 2008 年忆阻器被物理实现以来,由于其在安全通信、数学建模与分析、化学和生物系统等方面的潜在应用,在科学界引起了广泛关注。有研究将 VdPD 电路中的非线性电阻器替换为磁通控制忆阻器,以构建更适合高频混沌振荡器和安全通信相关应用的电路。近期,有人提出了一种基于忆阻器的混沌 VdPD 电路,通过将 VdPD 电路中的非线性电阻器替换为具有绝对值非线性的理想有源磁通控制忆阻器构建而成,该电路表现出双稳单涡卷自激混沌吸引子、双涡卷自激混沌吸引子、双稳周期吸引子和反单调性现象。

本文提出并分析了一种使用特定结构的绝对忆阻器构建的绝对忆阻器 VdPD 电路,该电路可表现出极端多稳定性现象、隐藏混沌吸引子和振幅控制特性。

2. 绝对忆阻器自治范德波尔 - 达夫宁电路的理论分析

2.1 电路结构

绝对忆阻器自治范德波尔 - 达夫宁电路由两个电容器 (C_a)、(C_b),一个带有内部电阻 (R_L) 的电

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值