欧拉计划problem12

题目
高度可约的三角形数
三角形数数列是通过逐个加上自然数来生成的。例如,第7个三角形数是 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28。三角形数数列的前十项分别是:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …
让我们列举出前七个三角形数的所有约数:

1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
我们可以看出,28是第一个拥有超过5个约数的三角形数。

第一个拥有超过500个约数的三角形数是多少?
代码

#include<iostream>
#include<cmath>
using namespace std;

int getnum(long n)
{
    int x = 0;

    for(int i = 1; i <sqrt(n); i++)
    {
        if(n%i==0)
        {
            x+=2;
        }
    }
    if(sqrt(n)*sqrt(n)==n)
    {
        x++;
    }
    return x;
}
int main()
{
    long n=1,i=1,temp = 0;
    while(1)
    {
        temp+=i++;
        if(getnum(temp)>500)
        {
            cout << temp<<endl;
            return 0;
        }
    }
    return 0;
}

最终答案:
76576500

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是采用Python编写的一个简单的示例程序,用于演示如何使用向前欧拉、向后欧拉和梯形欧拉方法求解初值问题,并计算相应的截断误差和收敛精度: ```python import numpy as np import matplotlib.pyplot as plt # 定义一个函数,表示初值问题的导数函数 def f(t, y): return y - t**2 + 1 # 定义一个函数,表示精确解 def exact(t): return (t+1)**2 - 0.5*np.exp(t) # 定义向前欧拉方法 def euler_forward(y0, t0, h, n): y = [y0] t = [t0] for i in range(n): y.append(y[i] + h*f(t[i], y[i])) t.append(t[i] + h) return y, t # 定义向后欧拉方法 def euler_backward(y0, t0, h, n): y = [y0] t = [t0] for i in range(n): y.append(y[i] + h*f(t[i+1], y[i+1])) t.append(t[i] + h) return y, t # 定义梯形欧拉方法 def trapezoidal(y0, t0, h, n): y = [y0] t = [t0] for i in range(n): y.append(y[i] + 0.5*h*(f(t[i], y[i]) + f(t[i+1], y[i] + h*f(t[i], y[i])))) t.append(t[i] + h) return y, t # 计算截断误差和收敛精度 def calculate_error(y, t, h): n = len(y) - 1 error = [0] for i in range(1, n+1): exact_value = exact(t[i]) error.append(abs(y[i] - exact_value)) convergence_order = np.log10(error[-1]/error[-2])/np.log10(h) return error, convergence_order # 设置初始条件和参数 y0 = 0.5 t0 = 0 h = 0.1 n = 10 # 使用向前欧拉方法求解初值问题 y_forward, t_forward = euler_forward(y0, t0, h, n) error_forward, convergence_order_forward = calculate_error(y_forward, t_forward, h) # 使用向后欧拉方法求解初值问题 y_backward, t_backward = euler_backward(y0, t0, h, n) error_backward, convergence_order_backward = calculate_error(y_backward, t_backward, h) # 使用梯形欧拉方法求解初值问题 y_trapezoidal, t_trapezoidal = trapezoidal(y0, t0, h, n) error_trapezoidal, convergence_order_trapezoidal = calculate_error(y_trapezoidal, t_trapezoidal, h) # 绘制精确解和数值解的图像 t_exact = np.linspace(t0, t0+n*h, 100) y_exact = exact(t_exact) plt.plot(t_exact, y_exact, label='Exact') plt.plot(t_forward, y_forward, 'o-', label='Euler Forward') plt.plot(t_backward, y_backward, 's-', label='Euler Backward') plt.plot(t_trapezoidal, y_trapezoidal, '^-', label='Trapezoidal') plt.legend() plt.xlabel('t') plt.ylabel('y') plt.title('Numerical Solution of Initial Value Problem') # 输出截断误差和收敛精度 print('Euler Forward: Error =', error_forward, ', Convergence Order =', convergence_order_forward) print('Euler Backward: Error =', error_backward, ', Convergence Order =', convergence_order_backward) print('Trapezoidal: Error =', error_trapezoidal, ', Convergence Order =', convergence_order_trapezoidal) plt.show() ``` 这段代码中,我们首先定义了一个初值问题的导数函数 `f` 和精确解函数 `exact`,然后分别实现了向前欧拉、向后欧拉和梯形欧拉方法的函数 `euler_forward`、`euler_backward` 和 `trapezoidal`。接着,我们定义了一个计算截断误差和收敛精度的函数 `calculate_error`,并使用这个函数计算了每种方法的截断误差和收敛精度。最后,我们绘制了精确解和数值解的图像,并输出了截断误差和收敛精度的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值