题意:
国王决定给你一些城市让你选择...首都是1号点..国王要求不能从1号点出发走到选择的城市..可以花一定代价去掉路...选择每个城市可以获得一定的分数..问可以获得的最大分数..以及要去掉的边的序号...
题解:
对于所有的边..起点往终点做边..容量为其去掉的代价...所有能选的城市与超级汇点做边..容量为选其能获得的分数..将所有可能获得的分数加起来减去构图的最大流(最小割)...就是答案..
题目还要求输出去掉了哪些边..那么从起点开始标号..如果容量为0就不能沿着这条边往下走..然后扫描所有的边..若其起点被标记了.终点未被标记..则该边是最小割中的割边....
总结:
这是一类比较典型的最小割模型...特点是要以什么代价选择什么可以获得一些分数..那么将可以获得的分数加起来..然后把代价和获得的分数都做边...假设跑出的最小割有获得分数的..那么总分数在减的时候相当于不选它...相反..若最小割没有某个获得的分数..相减后就代表要选这个分数的点....如果去掉的时代价..那么做减法相当于要付出这些代价...
Program:
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<time.h>
#include<map>
#include<math.h>
#include<queue>
#define MAXN 1505
#define MAXM 600005
#define oo 1000000007
#define ll long long
using namespace std;
struct Dinic
{
struct node
{
int c,u,v,next;
}edge[MAXM];
int ne,Tn,W[MAXM][2],head[MAXN];
int cur[MAXN], ps[MAXN], dep[MAXN];
bool mark[MAXN];
void initial()
{
ne=2,Tn=0;
memset(head,0,sizeof(head));
}
void addedge(int u, int v,int c)
{
edge[ne].u=u,edge[ne].v=v,edge[ne].c=c,edge[ne].next=head[u];
head[u]=ne++;
edge[ne].u=v,edge[ne].v=u,edge[ne].c=0,edge[ne].next=head[v];
head[v]=ne++;
}
void addT(int u,int v)
{
W[++Tn][0]=u,W[Tn][1]=v;
}
void dfs(int x)
{
mark[x]=true;
for (int k=head[x];k;k=edge[k].next)
if (!mark[edge[k].v] && edge[k].c)
dfs(edge[k].v);
}
int MaxFlow(int s,int t,int &num,int *ans)
{
int tr, res = 0;
int i,j,k,f,r,top;
while(1)
{
memset(dep, -1, sizeof(dep));
for(f=dep[ps[0]=s]=0,r=1;f!= r;)
for(i=ps[f++],j=head[i];j;j=edge[j].next)
if(edge[j].c&&dep[k=edge[j].v]==-1)
{
dep[k]=dep[i]+1;
ps[r++]=k;
if(k == t){ f=r; break; }
}
if(dep[t]==-1) break;
memcpy(cur,head,sizeof(cur));
i=s,top=0;
while(1)
{
if(i==t)
{
for(tr=oo,k=0;k<top;k++)
if(edge[ps[k]].c<tr)
tr=edge[ps[f=k]].c;
for(k=0;k<top;k++)
{
edge[ps[k]].c-=tr;
edge[ps[k]^1].c+=tr;
}
i=edge[ps[top=f]].u;
res+= tr;
}
for(j=cur[i];cur[i];j=cur[i]=edge[cur[i]].next)
if(edge[j].c && dep[i]+1==dep[edge[j].v]) break;
if(cur[i]) ps[top++]=cur[i],i=edge[cur[i]].v;
else
{
if(!top) break;
dep[i]=-1;
i=edge[ps[--top]].u;
}
}
}
memset(mark,false,sizeof(mark));
dfs(s);
num=0;
for (i=1;i<=Tn;i++)
if (mark[W[i][0]] && !mark[W[i][1]])
ans[++num]=i;
return res;
}
}T;
int ans[MAXM];
int main()
{
int C,cases,s,e,n,m,i,x,y,d,f,sum,num;
scanf("%d",&C);
for (cases=1;cases<=C;cases++)
{
scanf("%d%d%d",&n,&m,&f),sum=0;
s=1,e=n+1,T.initial();
while (m--)
{
scanf("%d%d%d",&x,&y,&d);
T.addedge(x,y,d),T.addT(x,y);
}
while (f--)
{
scanf("%d%d",&x,&d),sum+=d;
T.addedge(x,e,d);
}
printf("Case %d: %d\n",cases,sum-T.MaxFlow(s,e,num,ans));
printf("%d",num);
for (i=1;i<=num;i++) printf(" %d",ans[i]);
printf("\n");
}
return 0;
}