# 找质因数..打素数表..DFS解容斥问题...

Co-prime

Description

Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.

Input

The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).

Output

For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.

Sample Input

2
1 10 2
3 15 5

Sample Output

Case #1: 5
Case #2: 10

Hint

In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.

这题提醒的我就是在求一个数的质因数时..可以先将质数表打出来...10^9内的..质数表只需要扫到32000多(因为32000*32000>100000000了)...最终是打出3000多个质数..但要注意的是..有可能给的数就是质数..或者说有大于32000的质因数..但这样的质因数绝对最多一个...so...见程序.....

Program:

#include<iostream>
#define ll long long
using namespace std;
ll a,b,n,t,T,x,s[31],M,N,ans,p;
int Prime[40000];
void DFS(ll i,ll w,ll k)
{
for (;i<=n;i++)
{
p=w*s[i];
M+=k*(N/p);
DFS(i+1,p,-k);
}
return;
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
scanf("%I64d",&T);
ll i,j,num=0;
for (i=2;i<=33000;i++)
{
for (j=2;j*j<=i;j++)
if (i%j==0) goto A;
Prime[++num]=i;
A: ;
}
for (t=1;t<=T;t++)
{
scanf("%I64d%I64d%I64d",&a,&b,&x);
n=0;
for (i=1;i<=num;i++)
if (x%Prime[i]==0)
{
while (x%Prime[i]==0) x/=Prime[i];
s[++n]=Prime[i];
if (x==1) break;
}
if (x!=1) s[++n]=x;  // 处理超过32000的质因数
a--;
M=0; N=a;
DFS(1,1,1);
M=a-M;
ans=M;
M=0; N=b;
DFS(1,1,1);
M=b-M;
ans=M-ans;
printf("Case #%I64d: %I64d\n",t,ans);
}
return 0;
}


#### HOJ 2576 Simple Calculation 容斥原理（DFS）

2012-08-23 19:59:45

#### 容斥原理的几个问题总结

2014-11-05 16:46:25

#### 三集合容斥原理问题

2016-10-01 15:30:20

#### 容斥原理详解

2017-03-31 17:27:39

#### 容斥的原理及广义应用

2017-07-07 16:30:35

#### hdu 4059 小学生容斥

2015-10-22 11:05:15

#### 多彩的树 ssl2658 dfs+容斥原理

2017-04-19 20:37:01

#### HDU3388(二分+容斥原理)

2013-08-04 11:49:11

#### 51nod oj 1678 lyk与gcd 【容斥定理+打表】

2016-08-25 21:47:26

#### ACM 容斥原理 模板

2015-08-05 17:30:24