【刷题之路】LeetCode 268. 丢失的数字
一、题目描述
原题连接: https://leetcode.cn/problems/missing-number/
题目描述:
给定一个包含 [0, n] 中 n 个数的数组 nums ,找出 [0, n] 这个范围内没有出现在数组中的那个数。
示例 1:
输入: nums = [3,0,1]
输出: 2
解释:n = 3,因为有 3 个数字,所以所有的数字都在范围 [0,3] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 2:
输入: nums = [0,1]
输出: 2
解释:n = 2,因为有 2 个数字,所以所有的数字都在范围 [0,2] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 3:
输入: nums = [9,6,4,2,3,5,7,0,1]
输出: 8
解释:n = 9,因为有 9 个数字,所以所有的数字都在范围 [0,9] 内。8 是丢失的数字,因为它没有出现在 nums 中。
示例 4:
输入: nums = [0]
输出: 1
解释:n = 1,因为有 1 个数字,所以所有的数字都在范围 [0,1] 内。1 是丢失的数字,因为它没有出现在 nums 中。
二、解题
1、方法1——暴力法
1.1、思路分析
直接遍历0到n这n + 1个数字,对于每个数字,都遍历一遍nums数组查看它是否存在,找到那个不存在的数字并返回。
1.2、代码实现
有了以上思路,那我们写起代码来也就水到渠成了:
int missingNumber1(int* nums, int numsSize) {
assert(nums);
int i = 0;
int j = 0;
for (i = 0; i <= numsSize; i++) {
int flag = 0; // 表示是否找到i,找到为1,不找到为0,默认为0
for (j = 0; j < numsSize; j++) {
if (nums[j] == i) {
flag = 1;
break;
}
}
if (0 == flag) {
break;
}
}
return i;
}
时间复杂度:O(n^2),n为数组元素个数。
空间复杂度:O(1),我们只需要用到常数级的额外空间。
2、方法2——内层二分法
2.1、思路分析
在方法1的基础上,我们先对数组进行排序,在内层查找数字i是否存在时,使用二分法查找。
2.2、代码实现
有了以上思路,那我们写起代码来也就水到渠成了:
// 先写一个比较两个整型的函数
int cmp_int(const void* p1, const void* p2) {
return *((int*)p1) - *((int*)p2);
}
int missingNumber2(int* nums, int numsSize) {
assert(nums);
int target = 0;
int left = 0;
int right = 0;
int mid = 0;
// 先对数组进行排序
qsort(nums, numsSize, sizeof(nums[0]), cmp_int);
for (target = 0; target <= numsSize; target++) {
int flag = 0;
left = 0;
right = numsSize - 1;
while (left <= right) {
mid = left + (right - left) / 2;
if (target < nums[mid]) {
right = mid - 1;
}
else if (target > nums[mid]) {
left = mid + 1;
}
else {
flag = 1;
break;
}
}
if (0 == flag) {
break;
}
}
return target;
}
时间复杂度:O(Nlog2N),N为数组元素个数,我们最多要进行N + 1次二分查找,每次二分查找的复杂度为log2N,故时间复杂度为O(Nlog2N)。
空间复杂度:O(1),我们只需要用到常数级的额外空间。
3、方法3——求合法
3.1、思路分析
我们可以先求出从1到n所有数字的和SUM,再求出nums数组中所有数的和sum,用SUM 减去 sum得到的数即为丢失的数字。
3.2、代码实现
有了以上思路,那我们写起代码来也就水到渠成了:
int missingNumber3(int* nums, int numsSize) {
assert(nums);
int i = 0;
int SUM = 0;
int sum = 0;
for (i = 1; i <= numsSize; i++) {
SUM += i;
}
for (i = 0; i < numsSize; i++) {
sum += nums[i];
}
return SUM - sum;
}
时间复杂度:O(n),n为数组元素个数,求SUM和sum都需要遍历n数字,故时间复杂度为O(n)。
空间复杂度:O(1),我们只需要用到常数级的额外空间。
4、方法4——排序后遍历
4.1、思路分析
我们对数组进行排序后,可以直接遍历查找,当发现nums[i + 1] - nums[i] > 1时,则说明数组中缺少元素nums[i] + 1,直接返回nums[i] + 1即可。
只不过有两个特殊位置需要特殊判断:
如果nums[0] > 0,则说明数组中缺少的元素就是0,这时直接返回0即可。
如果nums[numsSize - 1] < numsSize,则说明数组中缺少的元素是numsSize(即n),这时直接返回numsSize即可。
4.2、代码实现
有了以上思路,那我们写起代码来也就水到渠成了:
int missingNumber4(int* nums, int numsSize) {
assert(nums);
// 先对数组进行排序
qsort(nums, numsSize, sizeof(nums[0]), cmp_int);
// 特殊情况特殊处理
if (nums[0] > 0) {
return 0;
}
else if (nums[numsSize - 1] < numsSize) {
return numsSize;
}
int i = 0;
for (i = 0; i < numsSize - 1; i++) {
if (nums[i + 1] - nums[i] > 1) {
break;
}
}
return nums[i] + 1;
}
时间复杂度:O(n),n为数组元素个数,我们最多只需要遍历数组的n - 1个元素即可,股时间复杂度为O(n)。
空间复杂度:O(1),我们只需要用到常数级的额外空间。
5、方法5——位运算
5.1、思路分析
我们可以利用异或运算的特性:a ^ a = 0 来直接求出答案。
我们设数组arr中存放的是从0到n的n + 1个数字,我们在将数组nums中的元素全部异或在一起后,再追加异或上数组arr中的全部元素,则异或的最终结果就是那个丢失的数字,因为其他数字均在数组nums和数组arr中出现了一次,总共两次。而只有那个丢失的数字只在arr数组中出现了一次。
所以最终的结果就为那个丢失的数字。
5.2、代码实现
有了以上思路,那我们写起代码来也就水到渠成了:
int missingNumber5(int* nums, int numsSize) {
assert(nums);
int ans = 0;
int i = 0;
// 先异或nums数组中的所有元素
for (i = 0; i < numsSize; i++) {
ans ^= nums[i];
}
// 再追加异或数字0到n
for (i = 0; i <= numsSize; i++) {
ans ^= i;
}
return ans;
}
时间复杂度:O(n),n为数组元素个数,我们总共需要异或n + (n + 1)个数字,故时间复杂度为O(n)。
空间复杂度:O(1),我们只需要用到常数级的额外空间。
6、方法6——数组模拟哈希表
6.1、思路分析
我们可以创建一个长度为n + 1的int数组has,并将其中元素全都初始化为-1。
然后遍历数组nums,将数组nums中的每一个元素都加入has数组中,然后遍历has数组
若has[i]还等于-1,则说明数字i并没有在数组nums中出现的,直接返回i即可。
6.2、代码实现
有了以上思路,那我们写起代码来也就水到渠成了:
int missingNumber6(int* nums, int numsSize) {
assert(nums);
int result = 0;
// 模拟个has表
int* has = (int*)malloc((numsSize + 1) * sizeof(int));
if (NULL == has) {
perror("missingNumber");
return -1;
}
// 初始化
int i = 0;
for (i = 0; i <= numsSize; i++) {
has[i] = -1;
}
for (i = 0; i < numsSize; i++) {
has[nums[i]] = nums[i];
}
for (i = 0; i <= numsSize; i++) {
if (-1 == has[i]) {
result = i;
break;
}
}
free(has);
has = NULL;
return result;
}
时间复杂度:O(n),n为数组元素个数,总时间约等于我们要遍历数组nums三次,故时间复杂度为O(n)。
空间复杂度:O(n),我们需要用到n + 1个额外的整型空间,故空间空间复杂度为O(n)。