浮点数的二进制表示

在讨论浮点数之前,先看一下整数在计算机内部是怎样表示的。


  int num=9;


上面这条命令,声明了一个整数变量,类型为int,值为9(二进制写法为1001)。普通的32位计算机,用4个字节表示int变量,所以9就被保存为00000000 00000000 00000000 00001001,写成16进制就是0x00000009。


那么,我们的问题就简化成:为什么0x00000009还原成浮点数,就成了0.000000?


下面一步一步的揭晓答案。


先来看一个公式,计算浮点数的公式:




根据国际标准IEEE 754,任意一个二进制浮点数V可以表示成下面的形式:

  

  (1)(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。

  (2)M表示有效数字,大于等于1,小于2。

  (3)2^E表示指数位



  (1)(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。


  (2)M表示有效数字,大于等于1,小于2。


  (3)2^E表示指数位。


举例来说,十进制的5.0,写成二进制是101.0,相当于1.01×2^2。那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。


十进制的-5.0,写成二进制是-101.0,相当于-1.01×2^2。那么,s=1,M=1.01,E=2。


IEEE 754规定,对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。


对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

IEEE 754对有效数字M和指数E,还有一些特别规定。



前面说过,1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分。IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。


至于指数E,情况就比较复杂。


首先,E为一个无符号整数(unsigned int)。这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,E的真实值必须再减去一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。


比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。


然后,指数E还可以再分成三种情况:


(1)E不全为0或不全为1。这时,浮点数就采用上面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。


(2)E全为0。这时,浮点数的指数E等于1-127(或者1-1023),有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。


(3)E全为1。这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);如果有效数字M不全为0,表示这个数不是一个数(NaN)。


0.5的二进制形式是0.1


它用浮点数的形式写出来是如下格式


 


0                01111110                 00000000000000000000000




符号位           阶码                       小数位


正数符号位为0,负数符号位为1


阶码是以2为底的指数


小数位表示小数点后面的数字


例1:


下面我们来分析一下0.5是如何写成0 01111110 00000000000000000000000




首先0.5是正数所以符号位为0


再来看阶码部分,0.5的二进制数是0.1,而0.1是1.0*2^(-1),所以我们总结出来:


要把二进制数变成(1.f)*2^(exponent)的形式,其中exponent是指数


而由于阶码有正负之分所以阶码=127+exponent;


即阶码=127+(-1)=126 即 01111110


余下的小数位为二进制小数点后面的数字,即00000000000000000000000




由以上分析得0.5的浮点数存储形式为0 01111110 00000000000000000000000  


例2


(逆向求十进制整数)一个浮点二进制数手工转换成十进制数的例子: 
假设浮点二进制数是 1011 1101 0100 0000 0000 0000 0000 0000 
按1,8,23位分成三段: 
1 01111010 10000000000000000000000 
最后一段是尾数。前面加上"1.", 就是 1.10000000000000000000000 
下面确定小数点位置。由E = e-Bias,阶码E是01111010,加上00000101才是01111111(127), 
所以他减去127的偏移量得e=-5。(或者化成十进制得122,122-127=-5)。
因此尾数1.10(后面的0不写了)是小数点右移5位的结果。要复原它就要左移5位小数点,得0.0000110, 即十进制的0.046875 。
最后是符号:1代表负数,所以最后的结果是 -0.046875 。


注意:其他机器的浮点数表示方法可能与此不同. 不能任意移植。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值