二叉树的实现

定义:

二叉树(Binary Tree)是n(n≥0)个结点的有限集合,该集合或者为空集,或者由一个根结点和两颗互不相交的,分别称为根结点的左子树和右子树的二叉树组成。

二叉树的定义也采用了递归,听起来有些绕,如果了解了树的结构的话,二叉树也可以定义为:

二叉树是每个结点最多只有两个分支的树结构。

类型:

满二叉树:

在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层,这样的二叉树称为满二叉树。

满二叉树的特点有:

  1. 叶子只能出现在最下一层。
  2. 非叶子结点的度一定是2。
  3. 在同样深度的二叉树中,满二叉树的结点个人最多,叶子树最多。

完全二叉树:

对一棵具有n个结点的二叉树按层序编号,如果编号为i(1≤≤n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树。

前序遍历:

 前序遍历(DLR,lchild,data,rchild),是二叉树遍历的一种,也叫做先根遍历、先序遍历、前序周游,可记做根左右。前序遍历首先访问根结点然后遍历左子树,最后遍历右子树。

(1)访问根结点。

(2)前序遍历左子树 。

(3)前序遍历右子树 。


package test;
//前序遍历的递归实现与非递归实现
import java.util.Stack;
public class Test 
{
	public static void main(String[] args)
	{
		TreeNode[] node = new TreeNode[10];//以数组形式生成一棵完全二叉树
		for(int i = 0; i < 10; i++)
		{
			node[i] = new TreeNode(i);
		}
		for(int i = 0; i < 10; i++)
		{
			if(i*2+1 < 10)
				node[i].left = node[i*2+1];
			if(i*2+2 < 10)
				node[i].right = node[i*2+2];
		}
		
		preOrderRe(node[0]);
	}
	
	public static void preOrderRe(TreeNode biTree)
	{//递归实现
		System.out.println(biTree.value);
		TreeNode leftTree = biTree.left;
		if(leftTree != null)
		{
			preOrderRe(leftTree);
		}
		TreeNode rightTree = biTree.right;
		if(rightTree != null)
		{
			preOrderRe(rightTree);
		}
	}
	
	public static void preOrder(TreeNode biTree)
	{//非递归实现
		Stack<TreeNode> stack = new Stack<TreeNode>();
		while(biTree != null || !stack.isEmpty())
		{
			while(biTree != null)
			{
				System.out.println(biTree.value);
				stack.push(biTree);
				biTree = biTree.left;
			}
			if(!stack.isEmpty())
			{
				biTree = stack.pop();
				biTree = biTree.right;
			}
		}
	}
}
 
class TreeNode//节点结构
{
	int value;
	TreeNode left;
	TreeNode right;
	
	TreeNode(int value)
	{
		this.value = value;
	}
}
 
 

中序遍历:

中序遍历(LDR)是二叉树遍历的一种,也叫做 中根遍历、中序周游。在二叉树中,先左后根再右。巧记:左根右。

中序遍历首先遍历左子树,然后访问根结点,最后遍历右子树

(1)中序遍历左子树

(2)访问根结点

(3)中序遍历右子树

import java.util.Stack;
public class Test 
{
	public static void main(String[] args)
	{
		TreeNode[] node = new TreeNode[10];//以数组形式生成一棵完全二叉树
		for(int i = 0; i < 10; i++)
		{
			node[i] = new TreeNode(i);
		}
		for(int i = 0; i < 10; i++)
		{
			if(i*2+1 < 10)
				node[i].left = node[i*2+1];
			if(i*2+2 < 10)
				node[i].right = node[i*2+2];
		}
		
		midOrderRe(node[0]);
		System.out.println();
		midOrder(node[0]);
	}
	
	public static void midOrderRe(TreeNode biTree)
	{//中序遍历递归实现
		if(biTree == null)
			return;
		else
		{
			midOrderRe(biTree.left);
			System.out.println(biTree.value);
			midOrderRe(biTree.right);
		}
	}
	
	
	public static void midOrder(TreeNode biTree)
	{//中序遍历费递归实现
		Stack<TreeNode> stack = new Stack<TreeNode>();
		while(biTree != null || !stack.isEmpty())
		{
			while(biTree != null)
			{
				stack.push(biTree);
				biTree = biTree.left;
			}
			if(!stack.isEmpty())
			{
				biTree = stack.pop();
				System.out.println(biTree.value);
				biTree = biTree.right;
			}
		}
	}
}
 
class TreeNode//节点结构
{
	int value;
	TreeNode left;
	TreeNode right;
	
	TreeNode(int value)
	{
		this.value = value;
	}
}
 

后序遍历:

后序遍历(LRD)是二叉树遍历的一种,也叫做 后根遍历、后序周游,可记做左右根。后序遍历有 递归和非递归算法两种。在二叉树中,先左后右再根。

(1)后序遍历左子树

(2)后序遍历右子树

(3)访问根结点

import java.util.Stack;
public class Test 
{
	public static void main(String[] args)
	{
		TreeNode[] node = new TreeNode[10];//以数组形式生成一棵完全二叉树
		for(int i = 0; i < 10; i++)
		{
			node[i] = new TreeNode(i);
		}
		for(int i = 0; i < 10; i++)
		{
			if(i*2+1 < 10)
				node[i].left = node[i*2+1];
			if(i*2+2 < 10)
				node[i].right = node[i*2+2];
		}
		
		postOrderRe(node[0]);
		System.out.println("***");
		postOrder(node[0]);
	}
	
	
	
	public static void postOrderRe(TreeNode biTree)
	{//后序遍历递归实现
		if(biTree == null)
			return;
		else
		{
			postOrderRe(biTree.left);
			postOrderRe(biTree.right);
			System.out.println(biTree.value);
		}
	}
	
	public static void postOrder(TreeNode biTree)
	{//后序遍历非递归实现
		int left = 1;//在辅助栈里表示左节点
		int right = 2;//在辅助栈里表示右节点
		Stack<TreeNode> stack = new Stack<TreeNode>();
		Stack<Integer> stack2 = new Stack<Integer>();//辅助栈,用来判断子节点返回父节点时处于左节点还是右节点。
		
		while(biTree != null || !stack.empty())
		{
			while(biTree != null)
			{//将节点压入栈1,并在栈2将节点标记为左节点
				stack.push(biTree);
				stack2.push(left);
				biTree = biTree.left;
			}
			
			while(!stack.empty() && stack2.peek() == right)
			{//如果是从右子节点返回父节点,则任务完成,将两个栈的栈顶弹出
				stack2.pop();
				System.out.println(stack.pop().value);
			}
			
			if(!stack.empty() && stack2.peek() == left)
			{//如果是从左子节点返回父节点,则将标记改为右子节点
				stack2.pop();
				stack2.push(right);
				biTree = stack.peek().right;
			}
				
		}
	}
}
 
class TreeNode//节点结构
{
	int value;
	TreeNode left;
	TreeNode right;
	
	TreeNode(int value)
	{
		this.value = value;
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值