基于Python爬虫的大众点评商家评论的文本挖掘

本文介绍了使用Python爬虫抓取大众点评商家评论,并进行情感分析和文本挖掘的过程。通过结巴分词抽取关键词,利用SnowNLP进行情感分析,发现消费者对店铺的评价主要集中在服务、菜品和排队体验上。
摘要由CSDN通过智能技术生成

使用工具

编程语言工具:Python 2.7  R 2 .2.1 excel

浏览器:Google Chrome

数据库: Mongodb

相关算法:情感分析

情感分析(Sentiment Analysis),又被称为倾向性分析、意见挖掘,是通过对带有一定的情感色彩的主观性文本进行处理分析,归纳推理的过程,例如通过用户对产品的性能、价格、便携性等方面的评价分析用户对该产品的情感倾向。通常来说,文本情感分析的目的是找出说话者在某些话题上或者针对同一事物的两极的观点的态度。或许是说话者当时的情感状态,抑或是作者有意向的情感交流。

情感分析的基本步骤是分类,即将文本传达的情感划分为不同的类别。在句子级、功能级判断文字所阐述的观点是正面的,负面的,抑或是中性的。

实现过程:

确定目标网站

通过在大众点评网站查找并确定目标商家,进入其评论页面(https://www.dianping.com/shop/5144193/review_more?pageno=)。

对目标网站结构进行解析:利用浏览器自带的解析工具查看评论在网页的前端代码中的位置。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值