量子计算中的门、张量积与纠缠
1. 单量子比特门与幺正矩阵
在量子计算里,单量子比特门和幺正矩阵紧密相连。所有元素属于复数域 $\mathbb{C}$ 的 2×2 幺正矩阵构成一个群,叫做 2 阶幺正群,记为 $U(2, \mathbb{C})$,它是 2 阶一般线性群 $GL(2, \mathbb{C})$ 的子群。每个单量子比特门都对应一个这样的幺正矩阵,并且我们能通过单位矩阵和泡利矩阵构造出所有的 2×2 幺正矩阵。
任意一个 $U(2, \mathbb{C})$ 中的矩阵 $U$ 可以写成一个复单位乘以幺正矩阵线性组合的形式:
$U = e^{\theta i}(c_{I_2}I_2 + c_{\sigma_x}\sigma_x + c_{\sigma_y}\sigma_y + c_{\sigma_z}\sigma_z)$
这里有如下定义、性质和恒等式:
- $I_2$ 是 2×2 的单位矩阵。
- $c_{\sigma_x}$、$c_{\sigma_y}$ 和 $c_{\sigma_z}$ 是泡利矩阵。
- $0 \leq \theta < 2\pi$。
- $c_{I_2} \in \mathbb{R}$。
- $c_{\sigma_x}$、$c_{\sigma_y}$ 和 $c_{\sigma_z} \in \mathbb{C}$。
- $|c_{I_2}|^2 + |c_{\sigma_x}|^2 + |c_{\sigma_y}|^2 + |c_{\sigma_z}|^2 = 1$。
- $\text{Re}(c_{I_2}c_{\sigma_x}) + \text{Im}(c_
量子计算中的门、张量积与纠缠解析
订阅专栏 解锁全文
31

被折叠的 条评论
为什么被折叠?



