题目描述
假设图用邻接矩阵存储。输入图的顶点信息和边信息,完成邻接矩阵的设置,并计算各顶点的入度、出度和度,并输出图中的孤立点(度为0的顶点)
--程序要求--
若使用C++只能include一个头文件iostream;若使用C语言只能include一个头文件stdio
程序中若include多过一个头文件,不看代码,作0分处理
不允许使用第三方对象或函数实现本题的要求
输入
测试次数T,每组测试数据格式如下:
图类型 顶点数 (D—有向图,U—无向图)
顶点信息
边数
每行一条边(顶点1 顶点2)或弧(弧尾 弧头)信息
输出
每组测试数据输出如下信息(具体输出格式见样例):
图的邻接矩阵
按顶点信息输出各顶点的度(无向图)或各顶点的出度 入度 度(有向图)。孤立点的度信息不输出。
输入样例1
2
D 5
V1 V2 V3 V4 V5
7
V1 V2
V1 V4
V2 V3
V3 V1
V3 V5
V4 V3
V4 V5
U 5
A B C D E
5
A B
A C
B D
D C
A D
输出样例1
0 1 0 1 0
0 0 1 0 0
1 0 0 0 1
0 0 1 0 1
0 0 0 0 0
V1: 2 1 3
V2: 1 1 2
V3: 2 2 4
V4: 2 1 3
V5: 0 2 2
0 1 1 1 0
1 0 0 1 0
1 0 0 1 0
1 1 1 0 0
0 0 0 0 0
A: 3
B: 2
C: 2
D: 3
E
NOTICE:这题依然考基础,明确基础概念;邻接矩阵的私有属性有:顶点数组(数组元素只有data)、顶点数量、边/弧数量、类型(有向图or无向图);因此函数中许多操作都要用if把有向图和无向图的操作区分一下;还有一个容易忘记的点就是邻接矩阵要初始化为0(话题外:涉及权值时要初始化为无穷,一般取一个不可能取到的大数)。
#include <iostream>
using namespace std;
class Graph
{
private:
string* data;
int** Matrix;
int vertexnum;
int edgenum;
char type;
int find(string s)
{
for (int i = 0; i < vertexnum; i++)
if (s == data[i])
return i;
}
public:
Graph()
{
//输入
cin >> type >> vertexnum;
data = new string[vertexnum];
Matrix = new int* [vertexnum];
for (int i = 0; i < vertexnum; i++)
Matrix[i] = new int[vertexnum];
for (int i = 0; i < vertexnum; i++)
cin >> data[i];
cin >> edgenum;
//初始化邻接矩阵
for (int i = 0; i < vertexnum; i++)
for (int j = 0; j < vertexnum; j++)
Matrix[i][j] = 0;
//构建邻接矩阵
string s1, s2;
if (type == 'D')//有向图
{
for (int i = 0; i < edgenum; i++)
{
cin >> s1 >> s2;
Matrix[find(s1)][find(s2)] = 1;
}
}
if (type == 'U')//无向图
{
for (int i = 0; i < edgenum; i++)
{
cin >> s1 >> s2;
Matrix[find(s1)][find(s2)] = 1;
Matrix[find(s2)][find(s1)] = 1;
}
}
}
~Graph()
{
delete[] data;
for (int i = 0; i < vertexnum; i++)
delete[]Matrix[i];
delete[]Matrix;
}
void display()
{
for (int i = 0; i < vertexnum; i++)
{
for (int j = 0; j < vertexnum; j++)
{
cout << Matrix[i][j];
if (j == vertexnum - 1)
cout << endl;
else
cout << " ";
}
}
if (type == 'D')
{
string a[1000];//存储孤立点
int index = 0;
for (int i = 0; i < vertexnum; i++)
{
int outdegree = 0;
int indegree = 0;
int degree = 0;
for (int j = 0; j < vertexnum; j++)
{
outdegree += Matrix[find(data[i])][j];
indegree += Matrix[j][find(data[i])];
}
degree = outdegree + indegree;
if (degree != 0)
cout << data[i] << ": " << outdegree << " " << indegree << " " << degree << endl;
else
{
a[index] = data[i];
index++;
}
}
//输出孤立点
for (int j = 0; j < index; j++)
{
cout << a[j] << endl;
}
}
if (type == 'U')
{
string a[1000];//存储孤立点
int index = 0;
for (int i = 0; i < vertexnum; i++)
{
int degree = 0;
for (int j = 0; j < vertexnum; j++)
{
degree += Matrix[find(data[i])][j];
}
if (degree != 0)
cout << data[i] << ": " << degree << endl;
else
{
a[index] = data[i];
index++;
}
}
//输出孤立点
for (int j = 0; j < index; j++)
{
cout << a[j] << endl;
}
}
}
};
int main()
{
int t;
cin >> t;
while (t--)
{
Graph g;
g.display();
}
return 0;
}