DS图—图的邻接矩阵存储及度计算

题目描述

假设图用邻接矩阵存储。输入图的顶点信息和边信息,完成邻接矩阵的设置,并计算各顶点的入度、出度和度,并输出图中的孤立点(度为0的顶点)

--程序要求--

若使用C++只能include一个头文件iostream;若使用C语言只能include一个头文件stdio

程序中若include多过一个头文件,不看代码,作0分处理

不允许使用第三方对象或函数实现本题的要求

输入

测试次数T,每组测试数据格式如下:

图类型  顶点数 (D—有向图,U—无向图)

顶点信息

边数

每行一条边(顶点1 顶点2)或弧(弧尾 弧头)信息

输出

每组测试数据输出如下信息(具体输出格式见样例):

图的邻接矩阵

按顶点信息输出各顶点的度(无向图)或各顶点的出度  入度  度(有向图)。孤立点的度信息不输出。

输入样例1

2
D 5
V1 V2 V3 V4 V5
7
V1 V2
V1 V4
V2 V3
V3 V1
V3 V5
V4 V3
V4 V5
U 5
A B C D E
5
A B
A C
B D
D C
A D

输出样例1

0 1 0 1 0
0 0 1 0 0
1 0 0 0 1
0 0 1 0 1
0 0 0 0 0
V1: 2 1 3
V2: 1 1 2
V3: 2 2 4
V4: 2 1 3
V5: 0 2 2
0 1 1 1 0
1 0 0 1 0
1 0 0 1 0
1 1 1 0 0
0 0 0 0 0
A: 3
B: 2
C: 2
D: 3
E

NOTICE:这题依然考基础,明确基础概念;邻接矩阵的私有属性有:顶点数组(数组元素只有data)、顶点数量、边/弧数量、类型(有向图or无向图);因此函数中许多操作都要用if把有向图和无向图的操作区分一下;还有一个容易忘记的点就是邻接矩阵要初始化为0(话题外:涉及权值时要初始化为无穷,一般取一个不可能取到的大数)。

#include <iostream>
using namespace std;

class Graph
{
private:
	string* data;
	int** Matrix;
	int vertexnum;
	int edgenum;
	char type;
	int find(string s)
	{
		for (int i = 0; i < vertexnum; i++)
			if (s == data[i])
				return i;
	}
public:
	Graph()
	{
		//输入
		cin >> type >> vertexnum;
		data = new string[vertexnum];
		Matrix = new int* [vertexnum];
		for (int i = 0; i < vertexnum; i++)
			Matrix[i] = new int[vertexnum];
		for (int i = 0; i < vertexnum; i++)
			cin >> data[i];
		cin >> edgenum;

		//初始化邻接矩阵
		for (int i = 0; i < vertexnum; i++)
			for (int j = 0; j < vertexnum; j++)
				Matrix[i][j] = 0;

		//构建邻接矩阵
		string s1, s2;
		if (type == 'D')//有向图
		{
			for (int i = 0; i < edgenum; i++)
			{
				cin >> s1 >> s2;
				Matrix[find(s1)][find(s2)] = 1;
			}
		}
		if (type == 'U')//无向图
		{
			for (int i = 0; i < edgenum; i++)
			{
				cin >> s1 >> s2;
				Matrix[find(s1)][find(s2)] = 1;
				Matrix[find(s2)][find(s1)] = 1;
			}
		}
	}
	~Graph()
	{
		delete[] data;
		for (int i = 0; i < vertexnum; i++)
			delete[]Matrix[i];
		delete[]Matrix;
	}
	void display()
	{
		for (int i = 0; i < vertexnum; i++)
		{
			for (int j = 0; j < vertexnum; j++)
			{
				cout << Matrix[i][j];
				if (j == vertexnum - 1)
					cout << endl;
				else
					cout << " ";
			}
		}

		if (type == 'D')
		{
			string a[1000];//存储孤立点
			int index = 0;
			for (int i = 0; i < vertexnum; i++)
			{
				int outdegree = 0;
				int indegree = 0;
				int degree = 0;

				for (int j = 0; j < vertexnum; j++)
				{
					outdegree += Matrix[find(data[i])][j];
					indegree += Matrix[j][find(data[i])];
				}
				degree = outdegree + indegree;

				if (degree != 0)
					cout << data[i] << ": " << outdegree << " " << indegree << " " << degree << endl;
				else
				{
					a[index] = data[i];
					index++;
				}
			}
			//输出孤立点
			for (int j = 0; j < index; j++)
			{
				cout << a[j] << endl;
			}
		}
		if (type == 'U')
		{
			string a[1000];//存储孤立点
			int index = 0;
			for (int i = 0; i < vertexnum; i++)
			{
				int degree = 0;

				for (int j = 0; j < vertexnum; j++)
				{
					degree += Matrix[find(data[i])][j];
				}

				if (degree != 0)
					cout << data[i] << ": " << degree << endl;
				else
				{
					a[index] = data[i];
					index++;
				}
			}
			//输出孤立点
			for (int j = 0; j < index; j++)
			{
				cout << a[j] << endl;
			}
		}
	}
};

int main()
{
	int t;
	cin >> t;
	while (t--)
	{
		Graph g;
		g.display();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值