自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 手搓神经网络——BP反向传播

这里只采用 ReLU、Sigmoid 作为神经网络的激活函数,MSE 作为损失函数下面列了这仨的计算公式与导数的计算公式。除了定义计算公式,也定义了其求导公式,因为链式法则,懂吧?😁 就是为了方便后面的求导(也就是误差反向传播)

2023-12-24 17:28:26 1381

原创 pip 镜像

当需要安装 xxx 库的时候,只需添加镜像地址即可。以下列出常用的国内镜像地址。

2024-05-05 17:39:34 279 1

原创 我的创作纪念日

提示:你过去写得最好的一段代码是什么?提示:当前创作和你的工作、学习是什么样的关系。提示:可以和大家分享最初成为创作者的初心。提示:在创作的过程中都有哪些收获。提示:职业规划、创作规划等​​。

2024-05-02 18:47:28 337 1

原创 YOLOv1 目标检测

在这里我们在设置一个计算 iou 的函数,只不过这个函数用于最终目标的检测,而非训练。在模型训练结束后,对 PASCAL VOC 2007 数据集中的图片进行目标检测。进行 NMS 处理后,过滤了无关紧要的预测框,very good!下面来看看对验证集数据的检测如何(似乎过得去吧,毕竟是笔者挑选过的😁)未进行 NMS 处理,对了同一个目标都存在多个预测框,效果不是很好。最终效果如下,当然这没什么值得骄傲的,毕竟这些用的是训练集中的数据。终于熬出头了,一切为了这一刻🎉。

2024-04-17 12:15:55 578 1

原创 YOLOv1 模型构建与训练

对于模型的训练,同样参考了论文中的方案(有意思的是笔者在训练中也使用了 TensorFlow 提供的分段衰退的方法,但效果似乎不如下面这种简单粗暴的方法)对于模型的构建,我们不采用论文中的方案,而是使用 ResNet 模型。至于为什么,在笔者的观测下,ResNet练的训练速度明显更快。使用 ResNet 作为模型,还有一个原因是 TensorFlow 提供的模型可以加载 ImageNet 数据集的训练权重。如果在不加载预训练权重的情况下,这里也给出笔者的训练方案。

2024-04-16 20:43:37 624

原创 YOLOv1 损失函数

由于 PASCAL VOC 2007 数据集有20个类别,每个网格输出2个预测框,而预测框中包含 (x, y, w, h, confidence),所以n等于30(30是怎么算出来的再之前的文章中有过解释)。函数用于计算预测框与标签的之间的 IOU ,对于 IOU 的计算其实没什么好说的。,其实区别并不大,虽然每个网格生成两个预测框,但在测试阶段,网格只会选取置信度分数最大的预测框作为最终输出,所以在标签里只需要考虑一个预测框就行了。以与真实框之间的 IOU 作为标签,计算了包含目标的预测框的置信度损失。

2024-04-15 13:44:56 1148 1

原创 YOLOv1 数据集加载

数据集是从现实场景中采集的图片,一共包含20个类别人:人🧔动物:鸟🦜、猫🐈、牛🐄、狗🐕、马🐎、羊🐏车辆:飞机✈️、自行车🚲、船🚢、公共汽车🚌、汽车🚗、摩托车🏍️、火车🚂室内:瓶子🍾、椅子🪑、餐桌、盆栽🪴、沙发🛋️、电视/显示器📺数据集可以用于主要可以用于检测、分割这2项任务目标检测目标分割。

2024-04-14 12:39:29 1138 1

原创 YOLOv1 论文简要

YOLO 已经成为目前最热门🔥🔥🔥的目标检测算法之一,虽然 YOLO 的作者在写完 YOLOv3 后,便停止了开发,但由于 YOLO 的卓越性能和创新性,吸引了不少企业、研究院对 YOLO 的改进,使得 YOLO 已经子孙满堂,玩出花🪷来了。但本文的重心依然是 YOLOv1YOLO 的全名是 You Only Look Once,你只需要看一次。在 YOLO 中,我们将目标检测看作为一个回归问题,所以只需要在图片上“看”一次,就可以获取目标的所有边界框和类别。

2024-04-13 16:12:41 884

原创 Coze:点燃创造,让每个人成为AI缔造者

Hi~ O(∩_∩)O,我是扣子⚙️。来到平台首页,你就可以与我对话啦。只需要告诉我 Bot 的名字与功能,我就可以帮助您快速完成一个 AI Bot 的创建、配置、应用……(什么?这么离谱!?这就是 AI 造 AI 吗?(ΩДΩ))

2024-02-19 12:12:25 1827 1

原创 Grad-CAM:CNN看到了啥

Grad-CAM,全名为Gradient-weighted Class Activation Mapping,中文名叫梯度加权类激活映射。是一种用于理解卷积神经网络决策的可视化技术,简单来说,它可以帮助我们“看到”神经网络在做出决策时,到底关注了图像的哪些部分,也就是卷积层的注意力部分呗此项技术可以应用在图像分类,图像转文字,视觉问题回答等任何特定任务的网络Grad-CAM无疑是一把解锁神经网络黑箱的钥匙。通过它,可以更直观地理解模型的内部工作机制,从而优化模型、提高性能(这句是水文章)

2024-02-06 19:40:03 1103 1

原创 手搓神经网络——矩阵求导

本文是对于《手搓神经网络——BP反向传播》一文中高级的 BP 反向传播部分的详细论述。

2024-01-27 00:06:23 1077

原创 混淆矩阵——评估指标

承接上文,本文通过混淆矩阵获取几个常见的评估指标。使用sklearn、tensorflow和手搓混淆矩阵这3种方式进行指标的计算 🦆🦆🦆。

2023-12-28 13:46:03 1123

原创 手搓神经网络——Fashion MNIST训练

相关文章:哼,就是整活儿😎😎😎。之前写了《手搓神经网络——BP反向传播》一文。此本便是基于前文的“实战”,基于之前手搓的神经网络框架,实现 Fashion MNIST 训练。毕竟实践出真知,在前篇中的验证仅验证了神经网络框架的自动求导正确与否…加载数据集使用 TensorFlow 加载 Fashion MNIST对训练数据集打乱,设置批大小定义激活函数、损失函数这个在《手搓神经网络——BP反向传播》中写过了,这里不多言构造框架关于此部分,笔者优化了框架结构,这样便于后期的神经网络模型构建

2023-12-26 21:13:47 526

原创 混淆矩阵——矩阵可视化

举个栗子🌰,我们要区分苹果🍎和凤梨🍐。我们。

2023-12-24 13:31:09 1972 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除