目录
1.通过导入numpy库来创建N维数组对象(ndarray)
1.通过导入numpy库来创建N维数组对象(ndarray)

如上图所示,先导入numpy库定义一个名字,然后创建数组。上图data1为一维数组,data2为二维数组。在ndarray对象中定义了一些重要属性,如下图:


2.创建其它数组
a.zeros()函数和ones()函数
创建元素值都是0的数组:

创建元素值都为1的数组:

b.empty()函数
创建元素值全是随机的数组:

c.arange()函数
创建一个功能类似于range()的等差数组:

3.ndarray的索引和切片
一维数组索引和切片:

二维数组的索引和切片:

4.numpy通用函数



5.利用numpy数组进行数据处理
a.将条件逻辑转为数组运算

b.数组统计运算

c.数组排序
利用sort()函数对数组里的元素进行排序

d.检索数组元素
all()函数用于判断整个数组中的元素的值是否全部满足条件,如果满足条件返回True,否则返回False。any()函数就是至少有一个满足条件。


常见的函数如下表所示:

6.随机数模块

本节主要从创建数组,数组的索引和切片,numpy的通用函数,利用numpy数组进行数据处理,随机数模块几个方面认识了numpy。
本文详细介绍了如何使用numpy创建N维数组,包括零初始化、全1数组、随机数组和等差序列。此外,涵盖了索引和切片技巧,以及利用numpy进行数据逻辑转换、统计运算、排序和元素检索。还涉及了numpy的通用函数和随机数模块,是理解numpy核心操作的全面指南。
471

被折叠的 条评论
为什么被折叠?



