—明天c语言机试赶紧花一天时间把西邮杯写下练练手…
写的脖子痛…
问题:可逆素数
题目描述
若将某一素数的个位数字顺序颠倒后得到的数任然是素数,则此素数称为可逆素数
判断给定的n个数据是否是可逆素数。
输入
第一行为n值,第二行输入n个数字,以空格间隔。
输出
输出n行,第一行的格式为【是可逆素数】(或者【是素数,但不是可逆素数】,用中文逗号隔开,或者【**不是素数】)。
请严格按照格式书写,不能出现其他文字或符号。
特别说明:待判断的数据不超过10个。
样例输入
3 23 31 18
样例输出
23是素数,但不是可逆素数 31是可逆素数 18不是素数
代码
#include<stdio.h>
int is_Prime(int n); //判断是否为素数
int swap(int n); //将一个数据逆置
int main()
{
int a[11];
int n;
int i,t;
int flag_1,flag_2;
scanf("%d",&n);
for(i=0; i<n; i++)
{
scanf("%d",&a[i]); //一定要记得在数组元素前加&取地址
}
for(i=0; i<n; i++) //每个数分别进行检查
{
flag_1=0; //记住要每次进行初始化
flag_2=0;
if(is_Prime(a[i]))
flag_1=1;
t=swap(a[i]);
if(is_Prime(a[i]))
flag_2=1;
if(flag_1==1 && flag_2==1)
printf("%d是可逆素数,",a[i]);
else if(flag_1==1 && flag_2 ==0 )
printf("%d是素数,但不是可逆素数,",a[i]);
else
printf("%d不是素数\n",a[i]);
}
return 0;
}
int is_Prime(int n)
{
int i;
if(n<=1)
return 0;
else if(n==2)
return 1;
else
{
for(i=2; i<n; i++) //此处注意要从2开始循环 且注意求余运算和除法运算不允许右边操作数为0值
{
if(n%i==0)
break;
}
if(i==n)
return 1;
else
return 0;
}
}
int swap(int n)
{
int result=0;
int i;
if(n==0)
return result;
while(n>0)
{
i=n%10;
n=n/10;
result = result*10 + i;
}
return result;
}
在写此题中也出现了一些问题:
1.终端出现:浮点数例外
是因为:求余运算和除法运算不允许右边的操作数为0值
2.素数判断方法:求一个数是否为素数时,应该分为3块 n<=1,n==2,n>2。前两个判断可以直接返回。后一个进行一个数从2开始依次取余,不能有公因数。
3.在scanf(“%d”,&a[i]);中经常忘记写&取地址符
4.在已知输入数字个数时,用数组与for循环结合的方法来进行每个数字的完整判断,务必记得在for循环中做的第一步是把想要初始化的初始化为零,记得其中一个数字(元素)判断完成后要对标记flag进行初始化呦。
问题:星系炸弹
题目描述
在x信息的广袤空间中漂浮着n个x星人造“”炸弹”,每个炸弹都可以设定多少天后爆炸。例如:例如:阿尔法炸弹2015年1月1日放置,定时为15天,则它在2015年1月16日,星期五爆炸。
输入
第一行为n值,以后连续n行为炸弹放置日期(格式为 年-月-日)和定时天数(整形)。
输出
输出n行,每行为爆炸的准确日期(格式为 yyyy年mm月dd日 星期几),日期和星期之间用一个空格隔开。请严格按照格式书写,不能出现其它文字或符号。
提示信息:星期的数据集合是【星期日、星期一、星期二、星期三、星期四、星期五、星期六】。1900年1月1日,是星期一。
样例输入
2 1999-9-9 800 2014-11-9 1000
样例输出
2001年11月17日 星期六 2017年08月05日 星期六
代码
#include <stdio.h>
void fun(int year,int mouth, int days, int day);
int main()
{
int n;
int days,day,mouth,year;
scanf("%d",&n);
while(n--)
{
scanf("%d-%d-%d %d",&year,&mouth,&day,&days);
fun(year,mouth,day,days);
}
printf("\n");
}
void fun(int year, int mouth, int days, int day)
{
char week[7][28]={"星期一","星期二","星期三","星期四","星期五","星期六","星期日"};
int mouthDays[12]={31,28,31,30,31,31,30,31,30,31,30,31};
int i;
int s=0;
int flag_1=0,flag_2=0;
for( i = 0; i < days; i++) //一个一个数往上加
{
day++;
if(day>mouthDays[mouth-1]) //特别好的判断条件
{ //他不溢出所有的都不溢出,它溢出了,就都要检查一遍
day = 1;
mouth++;
if(mouth>12)
{
mouth = 1;
year++;
// }
if((year%400 == 0) ||(year%4==0 && year%100!=0))
{
mouthDays[1]=29;
}
else
{
mouthDays[1]=28;
}
}
}
}
if(mouth<9)
flag_1=1;
if(day<9)
flag_2=1;
if(flag_1==1 && flag_2==1)
printf("%d年%0d月%0d日",year,mouth,day);
if(flag_1==1 && flag_2==0)
printf("%d年%0d月%d日",year,mouth,day);
if(flag_1==0 && flag_2==1)
printf("%d年%d月%0d日",year,mouth,day);
if(flag_1==0 && flag_2==0)
printf("%d年%d月%d日",year,mouth,day);
if(year>1990)
{
for(i=1990; i<year; i++)
{
if((i%400==0) ||(i%4==0 && i%100!=0))
s+=366;
else
s+=356;
}
if((year%400==0) ||(year%100!=0&&year%4==0))
mouthDays[1]=29;
else
mouthDays[1]=28;
for(i=0; i<mouth-1; i++) //这里要写mouth-1
s+=mouthDays[i];
s+=day-1;
printf("%s",week[s%7]);
}
}
else
{
for(i=1990; i>year; i--)
{
if(i%400 == 0 || (i%4==0 && i%100!=0))
{
s+=366;
}
else
{
s+=365;
}
if(year%400 == 0 || (year%4==0 && year%100!=0))
{
mouthDays[1]=29;
}
else
mouthDays[1]=28;
for(i=12; i>mouth; i--)
{
s+=mouthDays[i-1];
}
s+=mouthDays[mouth]-day+1;
printf("%s",week[s%7]);
}
}
最小公倍数
题目描述
小张是软件项目经理,他带领3个开发组。工期紧,今天都在加班呢。为鼓舞士气,小张打算给每个组发一袋核桃(据传言能补脑)。他的要求是:
(1)各组的核桃数量必须相同;
(2)各组内必须能平分核桃(当然是不能打碎的)
(3)尽量提供满足1,2条件的最小数量(节约闹革命嘛)
输入
输入包含三个正整数a,b,c,表示每个组正在加班的人数,用空格分开 (a,b,c均小于30)。
输出
输出一个正整数,表示每袋中核桃的数量,不要输出多余的信息。
样例输入
30 12 9
样例输出
180
其实就是求三个数的最小公倍数
方法为求出最大公因数
最小公倍数=x*y/最大公因数
#include<stdio.h>
int fun(int x, int y) //求两个数最大公因数
{
int t;
int d;
if(y>x)
{
t=x;
x=y;
y=t;
}
while(y!=0)
{
d=y;
y=x%y;
x=d;
}
return x;
}
int main()
{
int p,q,r,m,n;
scanf("%d %d %d",&p,&q,&r);
m=p*q/fun(p,q);
n=r*m/fun(r,m);
printf("%d",n);
return 0;
}
移动距离
题目描述
X星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为1,2,3…当排满一行时,从下一行相邻的楼往反方向排号。
例如:当小区排号宽度为6时,开始情形如下:
1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 …..
问题是:已知了两个楼号m和n,需要求出它们之间的最短移动距离(不能斜线方向移动)
输入
输入为3个整数w m n,空格分开,都在1到10000范围内。
w为排号宽度,m,n为待计算的楼号。
输出
输出一个整数,表示m n 两楼间最短移动距离。
样例输入
6 8 2
样例输出
4
求点的坐标,奇数行正序,偶数行逆序,曼哈顿距离(横坐标只差绝对值+纵坐标只差绝对值)
#include<stdio.h>
#include<math.h>
typedef struct node
{
int x;
int y;
}node;
node fun(int w,int x);
int main()
{
int w,m,n;
int len;
scanf("%d %d %d",&w,&m,&n);
node tmp_1,tmp_2;
tmp_1=fun(w,m);
tmp_2=fun(w,m);
len=abs(tmp_1.x-tmp_2.x)+abs(tmp_1.y-tmp_2.y);
printf("%d",len);
return 0;
}
node fun(int w,int n)
{
node tmp;
tmp.x=(n-1)%w+1;
tmp.y=n%w;
if(tmp.y==0)
tmp.y=w;
if(tmp.x%2==0)
tmp.y=w-tmp.y+1;
return tmp;
}
翻硬币
题目描述
小明正在玩一个“翻硬币”的游戏,桌上放着排成一排的若干硬币。我们用 * 表示正面, 用 o 表示反面(是小写字母,不是零)。例如,可能情形是:**oo***oooo,如果同时翻转左边的两个硬币,则变为:oooo***oooo。
现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢?
我们约定:把翻动相邻的两个硬币叫做一步操作。
输入
两行等长的字符串,分别表示初始状态和要达到的目标状态,每行的长度<1000。
输出
一个整数,表示最小操作步数。
样例输入
** o****o**
样例输出
5
#include<stdio.h>
#include<string.h>
char a[1001];
char b[1001];
void fun(int i);
int main()
{
int len,i;
int count = 0; //别忘了先让count=0
gets(a);
gets(b);
len=strlen(a);
for(i=0; i<len; i++)
{
if(a[i]!=b[i])
{
fun(i);
count++;
}
}
printf("%d\n",count);
}
void fun(int i)
{
if(a[i]== 'o')
a[i]='*';
else
a[i]='o';
if(a[i+1!=EOF])
{
if(a[i+1]=='o')
a[i+1]='*';
else
a[i+1]='o';
}
}
字符统计
题目描述
编写程序接收从键盘输入的n个字符串(1
#include<stdio.h>
#include<string.h>
int main()
{
char a[20][101];
int len;
int kongge;
int shuzi;
int daxie;
int qita;
int n=0;
int j;
int i;
scanf("%d",&n);
for(i=0; i<n;i++) //
{
kongge = 0;
shuzi = 0;
daxie = 0;
xiaoxie = 0;
qita = 0;
len =strlen(a[i]);
for(j=0; j<len j++)
{
if(a[i][j]== ' ') komgge++;
else if( a[i][j] >='0' &&a[i][j]<='9') shuzi++; //数字在间
else if(a[i][j] >= 'a' && a[i][j]<='z') xiaoxie++;
else if(a[i][j] >= 'A' &&a[i][j]<='Z') daxie++;
else qita++;
}
printf("%d %d %d %d %d %d %d",len+1,kongge+1,daxie,xiaoxie,shuzi,kongge,qita); //字符串长度最后要加\0 ,单词数量=空格数+1
printf("\n");
}
return 0;
}
字符串长度最后要加\0 ,单词数量=空格数+1
特殊回文数
题目描述
1233231是一个非常特殊的数,它从最左边读和从右边读是一样的。输入一个正整数n,编程所有这样的武威和六位十进制数,满足各位数字之和等于n(1<=n<=54)。
输入
输入一个正整数n。
输出
若回文数的个数<=10,按从小到大的顺序输出满足条件的特殊回文数,每个数字占一行。若特殊回文数的个数》10.则金输出总个数。
样例输入
52
样例输出
899998 989989 998899
#include<stdio.h>
void fun(int n)
{
int h[10001];
int n;
int i,j=0,sum,count=0;
for(i=10000; i<100000; i++)
{
sum = 0;
tmp = i;
len = 0;
while(tmp !=0)
{
sum=sum*10+tmp%10;;
tmp=tmp/10;
len++;
}
if(sum = i)
{
a=i%10;
b=i/10%10;
c=i/100%10;
if(len==5)
{
if(n ==(2*a+2*b+c))
{
h[j++] = i;
count++;
}
}
if(len == 6)
{
if(n=(2*a+2*b+2*c))
{
h[j++]=i;
count++;
}
}
}
}
if(count <=10)
{
for(i=0; i<count; i++)
printf("%d\n",h[i]);
}
else
{
printf("%d",count);
}
}
int main()
{
int n;
scanf("%d",&n);
fun(n);
return 0;
}
特大整数的精确加减法
题目描述
特大整数用长整形也存不下,如果用双精度实型存储则会造成误差,可以用字符数组存储所有位,再按十进制由低到高逐位相加,同时考虑进位。
特别提示:假设特大整数不超过30位。参与操作的数据中,被减数>减数。
算法分析:
1.初始化:将两个特大整数输入两个字符数组,将两个将两个字符数组的个元素右移,使最低位的元素位置对其,高位补0,为了存储最高位的进位,位数多的数最高位前也应补一个0.
2.从最低位对应的数组元素开始将数字字符转换为整形数据相加,因为数字字符‘0’对应的ASCII值是48,则:整形数据1+2,相当于(‘1’-48)+(‘2’-48),即‘1’+‘2’-96
3.将和整除以10,余数就是该位的结果,并转化为字符(整形数据+48)存入该位,商就是进位数。
4.再对高一位对应的数组元素操作,将该位数字字符转化为整形相加,并与低位进位数相加,将和整除以10,余数就是该位的结果,商就是本位的进位数。
5.重复4直到最高位。如果最高位相加时进位数大于0,则此进位数转化为字符存入最高位。
输入
第一行待运算的表达式个数n,之后连续的2n行每相邻得两行为一组。
输出
依次输出运算结果,共输出2n行。前n行为相加的运算结果;后n行为相减的运算结果,每个结果独占一行。
样例输入
3 123456789 23456789 999999999 999999999 1000000000 9999
样例输出
146913578 1999999998 1000009999 100000000 0 999990001
模拟竖式的手工过程
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
void swap(char target[]) {
int i;
int j;
char temp;
for(i = 0,j = strlen(target) - 1;i <= j;i++,j--) {
temp = target[i];
target[i] = target[j];
target[j] = temp;
}
}
void BigNumAdd(char a[],char b[]) {
int i;
char c[1001] = {0};
swap(a);
swap(b);
for(i = 0;i < strlen(a) && i < strlen(b);i++) {
c[i] += a[i] + b[i] - '0';
if(c[i] - '0' >= 10){
c[i] = c[i] - 10;
c[i+1] = 1;
}
}
if(strlen(a) == strlen(b)) {
if(c[i] == 1)
c[i]='1';
}
if(strlen(a) > strlen(b)){
if(c[i] == 1) {
for(;i < strlen(a);i++){
c[i] += a[i];
if(c[i] - '0' >= 10) {
c[i] = c[i] - 10;
c[i+1] = 1;
}
}
if(c[i-1] == '0')
c[i] = '1';
}
else {
for(;i < strlen(a);i++)
c[i] = a[i];
}
}
if(strlen(b) > strlen(a)){
if(c[i]==1){
for(;i < strlen(b);i++){
c[i] += b[i];
if(c[i] - '0' >= 10){
c[i] = c[i] - 10;
c[i+1] = 1;
}
}
if(c[i] == 1)
c[i] = '1';
} else {
for(;i < strlen(b);i++)
c[i] = b[i];
}
}
swap(c);
printf("%s\n",c);
}
void BigNumChange(char *str1, char *str2) {
int len1 = strlen(str1);
int len2 = strlen(str2);
int i;
int *num1 = (int*)malloc(len1*sizeof(int));
int *num2 = (int*)malloc(len1*sizeof(int));
if(str1 == NULL || str2 == NULL)
return;
for (i = 0; i < len1; i++)
{
num1[i] = num2[i] = 0;
}
for (i = len1 - 1; i >= 0; i--)
{
num1[len1 - 1 - i] = str1[i] - '0';
}
for (i = len2 - 1; i >= 0; i--)
{
num2[len2-1-i] = str2[i] - '0';
}
for (i = 0; i < len1; i++)
{
num1[i] = num1[i] - num2[i];
if(num1[i] < 0)
{
num1[i] = num1[i] + 10;
num1[i+1] = num1[i+1] - 1;
}
}
for (i = len1-1; i>=0 && num1[i] == 0; i--)
;
if(i >= 0)
for (; i >= 0; i--)
{
printf("%d",num1[i]);
}
else
printf("0");
}
int main(void) {
int n;
char a[100][100];
int i;
int len1;
int len2;
scanf("%d",&n);
for(i = 0;i < 2*n;i++) {
scanf("%s",a[i]);
}
for(i = 0;i < 2*n;i += 2) {
BigNumAdd(a[i],a[i+1]);
}
for(i = 0;i < 2*n;i++) {
swap(a[i]);
}
for(i = 0;i < 2*n;i += 2) {
len1 = strlen(a[i]);
len2 = strlen(a[i+1]);
if(len1 > len2) {
BigNumChange(a[i],a[i+1]);
} else if(len1 < len2) {
printf("-");
BigNumChange(a[i+1],a[i]);
} else {
if(strcmp(a[i],a[i+1]) >= 0) {
BigNumChange(a[i],a[i+1]);
} else {
printf("-");
BigNumChange(a[i+1],a[i]);
}
}
printf("\n");
}
return 0;
}