leetcode543. 二叉树的直径

本文探讨了如何通过递归方法求解二叉树的最大直径问题,包括自顶向下和自底向上的两种策略。两种方法分别利用了左右子树的高度和直接遍历节点获取最长路径。适用于寻找任意两点间最长路径,挑战与LeetCode 110类似。
摘要由CSDN通过智能技术生成

1.题目描述:

给定一棵二叉树,你需要计算它的直径长度。一棵二叉树的直径长度是任意两个结点路径长度中的最大值。这条路径可能穿过也可能不穿过根结点。注意:两结点之间的路径长度是以它们之间边的数目表示。另注:子树较复杂时最长路径可以不穿过根节点,这道题目跟leetcode110.平衡二叉树类似,自顶向下,自底向上两种解法。

2.自顶向下递归:

首先理清解题的思路:与leetcode110.平衡二叉树一样,利用左右节点子树的高度来解决此题。递归的三步骤,①递归终止条件:root = null,返回0。②每级递归需要做什么:得到路径穿过当前节点的最长路径即左右子树高度之和,并且比较经过当前节点左子节点和右子节点的最长路径。③返回值:返回第二步中的三者的最大值。复杂度分析类似leetcode110.平衡二叉树

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int diameterOfBinaryTree(TreeNode root) {
        if(root == null) return 0;
        int max = depth(root.left) + depth(root.right);//这里返回边数,若节点数则需要+1
        int max1 = Math.max(diameterOfBinaryTree(root.left),diameterOfBinaryTree(root.right));
        return Math.max(max,max1);
    }
    public int depth(TreeNode curNode){
        return curNode == null ? 0 : Math.max(depth(curNode.left),depth(curNode.right)) + 1;
    }
}

3.自底向上递归:

在调用height方法的同时直接获得max值,只需遍历所有节点,时间复杂度和空间复杂度均为O(n)。

class Solution {
    int max = 0;
    public int diameterOfBinaryTree(TreeNode root) {
        height(root);
        return max;
    }
    public int height(TreeNode curNode) {
        if (curNode == null) return 0;
        int l = height(curNode.left);
        int r = height(curNode.right);
        max = Math.max(max, l + r);
        return Math.max(l, r) + 1;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值