leetcode135. 分发糖果

这篇博客介绍了一种使用贪心算法解决儿童糖果分配问题的方法。给定一个包含n个孩子及其评分的数组,目标是确保每个孩子至少得到1颗糖果,并且评分更高的孩子会获得更多的糖果。通过两次遍历数组,从左到右和从右到左,更新每个孩子的糖果数,以满足相邻孩子评分的比较条件。最后,计算总糖果数作为结果。该算法有效地解决了问题,保证了最少的糖果数量。
摘要由CSDN通过智能技术生成

1.题目描述:

n个孩子站成一排。给你一个整数数组ratings表示每个孩子的评分。你需要按照以下要求,给这些孩子分发糖果:每个孩子至少分配到1个糖果。相邻两个孩子评分更高的孩子会获得更多的糖果。请你给每个孩子分发糖果,计算并返回需要准备的最少糖果数目。

2.贪心算法:

从左往右遍历,判断右边的数比左边大;从右往左遍历,判断左边的数比右边的大。第一次遍历时所有的糖果默认为1,若右边的数大则累计加1。例如孩子数组[1,2,5,4,3],经过第一次遍历,糖果数组从[1,1,1,1,1]变为[1,2,3,1,1]。第二次遍历从右遍历时,若左边的数a大于右边的数b,则要保证左边的数最小不能小于b+1,数a这个位置的数要 >= b + 1(右边的约束),同时又不能小于a(左边的约束),取最小即为两者的最大值。得到[1,2,3,2,1]这样经过两轮遍历便可得到结果。

class Solution {
    public int candy(int[] ratings) {
        int[] res = new int[ratings.length];
        for (int i = 0; i < res.length; i++) {
            res[i] = 1;
        }
        for (int i = 0; i < ratings.length - 1; i++) {
            if (ratings[i + 1] > ratings[i]) res[i + 1] = res[i] + 1;
        }
        for (int i = ratings.length - 1; i >= 1; i--) {
            if (ratings[i - 1] > ratings[i]) res[i - 1] = Math.max(res[i] + 1, res[i - 1]);
        }
        int sum = 0;
        for (int ele : res) {
            sum += ele;
        }
        return sum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值