Python容器和 Numpy库基础

Python容器和 Numpy库基础

这是CS223图像识别的补充的python和Numpy库的基础课程,我稍微做了整理,原文链接:http://cs231n.github.io/python-numpy-tutorial/#python

1.     运算符//,

" // "来表示整数除法,返回不大于结果的一个最大的整数,而" / " 则单纯的表示浮点数除法

例如: 5//2 = 2

2.     字符串的运用

s = "hello"

print(s.capitalize())  # Capitalize a string; prints "Hello"

print(s.upper())       # Convert a string to uppercase;prints "HELLO"

print(s.rjust(7))     #Right-justify a string, padding with spaces; prints "  hello"

print(s.center(7))    #Center a string, padding with spaces; prints " hello "

print(s.replace('l', '(ell)')) #Replace all instances of one substring with another;

                                # prints"he(ell)(ell)o"

print('  world '.strip())  # Strip leading and trailing whitespace; prints "world"

3.     容器-Lists

an contain elements of different types:如:[1,2,”jk”,]

切割:

print(nums[2:4])          # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
print(nums[2:])           # Get a slice from index 2 to the end; prints "[2, 3, 4]"
print(nums[:2])           # Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
print(nums[:])            # Get a slice of the whole list; prints "[0, 1, 2, 3, 4]"
print(nums[:-1])          # Slice indices can be negative; prints "[0, 1, 2, 3]"
nums[2:4] = [8, 9]        # Assign a new sublist to a slice
print(nums)               # Prints "[0, 1, 8, 9, 4]"

循环:

animals = ['cat', 'dog', 'monkey']
for idx, animal in enumerate(animals):
    print('#%d: %s' % (idx + 1, animal))
# Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line

可以对列表进行各元素统一处理不需要循环

nums = [0, 1, 2, 3, 4]
squares = [x ** 2 for x in nums]
print(squares)   # Prints [0, 1, 4, 9, 16]
 
nums = [0, 1, 2, 3, 4]
even_squares = [x ** 2 for x in nums if x % 2 == 0]
print(even_squares)  # Prints "[0, 4, 16]"

4.     容器-Dictionaries(字典)

A dictionary stores (key, value) pairs,注意Get的用法

d = {'cat': 'cute', 'dog': 'furry'}  # Create a new dictionary with some data
d['fish'] = 'wet'     # Set an entry in a dictionary
print(d['fish'])      # Prints "wet"
# print(d['monkey'])  # KeyError: 'monkey' not a key of d
print(d.get('monkey', 'N/A'))  # Get an element with a default; prints "N/A"
print(d.get('fish', 'N/A'))    # Get an element with a default; prints "wet"
del d['fish']         # Remove an element from a dictionary
print(d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A"

循环:(默认是索引,d.iteme对应索引和内容)

d = {'person': 2, 'cat': 4, 'spider': 8}
for animal in d:
    legs = d[animal]
    print('A %s has %d legs' % (animal, legs))
# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"
d = {'person': 2, 'cat': 4, 'spider': 8}
for animal, legs in d.items():
    print('A %s has %d legs' % (animal, legs))
# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"
nums = [0, 1, 2, 3, 4]
even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0}
print(even_num_to_square)  # Prints "{0: 0, 2: 4, 4: 16}"
 

5.     容器-Set(不同元素的无序集合)

如:animals = {'cat', 'dog'}
 
from math import sqrt
nums = {int(sqrt(x)) for x in range(30)}
print(nums)  # Prints "{0, 1, 2, 3, 4, 5}"
 

注意set不能像Lists那样数字索引获得内容

6.     容器-Tuples元组

A tuple is an (immutable) ordered list of values.

与Lists不同的地方是:可以作为字典的索引  和 set的元素

d = {(x, x + 1): x for x in range(10)}  # Create a dictionary with tuple keys
t = (5, 6)        # Create a tuple
print(type(t))    # Prints "<class 'tuple'>"
print(d[t])       # Prints "5"
print(d[(1, 2)])  # Prints "1"

 

Numpy库

1.     Arrays(注意要使用Array, import numpy)

注意.shape() 获得

import numpy as np
 
a = np.array([1, 2, 3])   # Create a rank 1 array
print(type(a))            # Prints "<class 'numpy.ndarray'>"
print(a.shape)            # Prints "(3,)"
print(a[0], a[1], a[2])   # Prints "1 2 3"
a[0] = 5                  # Change an element of the array
print(a)                  # Prints "[5, 2, 3]"
 
b = np.array([[1,2,3],[4,5,6]])    # Create a rank 2 array
print(b.shape)                     # Prints "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0])   # Prints "1 2 4"

常用的Array

import numpy as np
 
a = np.zeros((2,2))   # Create an array of all zeros
print(a)              # Prints "[[ 0.  0.]
                      #          [ 0.  0.]]"
 
b = np.ones((1,2))    # Create an array of all ones
print(b)              # Prints "[[ 1.  1.]]"
 
c = np.full((2,2), 7)  # Create a constant array
print(c)               # Prints "[[ 7.  7.]
                       #          [ 7.  7.]]"
 
d = np.eye(2)         # Create a 2x2 identity matrix
print(d)              # Prints "[[ 1.  0.]
                      #          [ 0.  1.]]"
 
e = np.random.random((2,2))  # Create an array filled with random values
print(e)    # Might print "[[ 0.91940167  0.08143941]
            #               [ 0.68744134  0.87236687]]"

与Lists类似,Arrays也可以切割检索

# Create the following rank 2 array with shape (3, 4)
# [[ 1  2  3  4]
#  [ 5  6  7  8]
#  [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
 
# Two ways of accessing the data in the middle row of the array.
# Mixing integer indexing with slices yields an array of lower rank,
# while using only slices yields an array of the same rank as the
# original array:
row_r1 = a[1, :]    # Rank 1 view of the second row of a
row_r2 = a[1:2, :]  # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)  # Prints "[5 6 7 8] (4,)"
print(row_r2, row_r2.shape)  # Prints "[[5 6 7 8]] (1, 4)"

 

整合Array: allows youto construct arbitrary arrays using the data from another array.

import numpy as np
 
a = np.array([[1,2], [3, 4], [5, 6]])
 
# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]])  # Prints "[1 4 5]"
 
# The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))  # Prints "[1 4 5]"

为了便于理解可以把array写成矩阵样式

# Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
 
print(a)  # prints "array([[ 1,  2,  3],
          #                [ 4,  5,  6],
          #                [ 7,  8,  9],
          #                [10, 11, 12]])"
 
# Create an array of indices
b = np.array([0, 2, 0, 1])
 
# Select one element from each row of a using the indices in b
print(a[np.arange(4), b])  # Prints "[ 1  6  7 11]"
 
# Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10
 
print(a)  # prints "array([[11,  2,  3],
          #                [ 4,  5, 16],
          #                [17,  8,  9],
          #                [10, 21, 12]])

注:numpy中的arange() 和 python自带的range()相似,不过一个返回array,一个返回list

同时也可以用 布尔bool 进行整合

a=np.array([[1,2], [3, 4], [5, 6]])
 
bool_idx = (a > 2)   # Find the elements of a that are bigger than 2;
                     # this returns a numpy array of Booleans of the same
                     # shape as a, where each slot of bool_idx tells
                     # whether that element of a is > 2.
 
print(bool_idx)      # Prints "[[False False]
                     #          [ True  True]
                     #          [ True  True]]"
 
# We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx])  # Prints "[3 4 5 6]"
 
# We can do all of the above in a single concise statement:
print(a[a > 2])     # Prints "[3 4 5 6]"

2.Datatypes

import numpy as np
 
x = np.array([1, 2])   # Let numpy choose the datatype
print(x.dtype)         # Prints "int64"
 
x = np.array([1.0, 2.0])   # Let numpy choose the datatype
print(x.dtype)             # Prints "float64"
 
x = np.array([1, 2], dtype=np.int64)   # Force a particular datatype
print(x.dtype)                         # Prints "int64"

3.Array的数学运算

数学运算符同样可以运用到Array中,将对应元素进行运算即可

import numpy as np

 

x = np.array([[1,2],[3,4]], dtype=np.float64)

y = np.array([[5,6],[7,8]], dtype=np.float64)

 

# Elementwise sum; both produce the array

# [[ 6.0  8.0]

#  [10.0 12.0]]

print(x +y)

print(np.add(x,y))

 

# Elementwise difference; both produce the array

# [[-4.0 -4.0]

#  [-4.0 -4.0]]

print(x -y)

print(np.subtract(x,y))

 

# Elementwise product; both produce the array

# [[ 5.0 12.0]

#  [21.0 32.0]]

print(x *y)

print(np.multiply(x,y))

 

# Elementwise division; both produce the array

# [[ 0.2         0.33333333]

#  [ 0.42857143  0.5      ]]

print(x /y)

print(np.divide(x,y))

 

# Elementwise square root; produces the array

# [[ 1.          1.41421356]

#  [ 1.73205081  2.       ]]

print(np.sqrt(x))

注意:*与MATLAB中不同,向量矩阵乘在numpy中用dot()

import numpy as np

 

x = np.array([[1,2],[3,4]])

y = np.array([[5,6],[7,8]])

 

v = np.array([9,10])

w = np.array([11, 12])

 

# Inner product of vectors; both produce 219

print(v.dot(w))

print(np.dot(v,w))

 

# Matrix / vector product; both produce the rank 1 array [29 67]

print(x.dot(v))

print(np.dot(x,v))

 

# Matrix / matrix product; both produce the rank 2 array

# [[19 22]

#  [43 50]]

print(x.dot(y))

print(np.dot(x,y))

一些常用函数:sum(),.T()


x = np.array([[1,2],[3,4]])

 

print(np.sum(x))  # Compute sum of all elements; prints "10"

print(np.sum(x, axis=0)) #Compute sum of each column; prints "[4 6]"

print(np.sum(x, axis=1)) #Compute sum of each row; prints "[3 7]"

 

x = np.array([[1,2], [3,4]])

print(x)    # Prints "[[1 2]

            #          [3 4]]"

print(x.T)  # Prints "[[1 3]

            #          [2 4]]"

 

# Note that taking the transpose of a rank 1 array does nothing:

v = np.array([1,2,3])

print(v)    # Prints "[1 2 3]"

print(v.T)  # Prints "[1 2 3]"

4.Broadcasting广播机制

一定要注意,执行 broadcast 的前提在于,两个 ndarray 执行的是 element-wise(按位加,按位减)的运算

注意的几条规则:

(1)如果数组不具有相同的秩,则先将低层数组的形状用1表示,直到两个形状都有相同的长度。


# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v  # Add v to each row of x using broadcasting
print(y)  # Prints "[[ 2  2  4]
          #          [ 5  5  7]
          #          [ 8  8 10]
          #          [11 11 13]]"

(2)两个数组要是相容的(即shape相同)或其中数组有维度为1

维度有1的Array操作时对应另一数组的该维度的每一行( were copiedalong that dimension

注意reshape()的运用

# Compute outer product of vectors
v = np.array([1,2,3])  # v has shape (3,)
w = np.array([4,5])    # w has shape (2,)
# To compute an outer product, we first reshape v to be a column
# vector of shape (3, 1); we can then broadcast it against w to yield
# an output of shape (3, 2), which is the outer product of v and w:
# [[ 4  5]
#  [ 8 10]
#  [12 15]]
print(np.reshape(v, (3, 1)) * w)
 
# Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:
# [[2 4 6]
#  [5 7 9]]
print(x + v)
 
# Add a vector to each column of a matrix
# x has shape (2, 3) and w has shape (2,).
# If we transpose x then it has shape (3, 2) and can be broadcast
# against w to yield a result of shape (3, 2); transposing this result
# yields the final result of shape (2, 3) which is the matrix x with
# the vector w added to each column. Gives the following matrix:
# [[ 5  6  7]
#  [ 9 10 11]]
print((x.T + w).T)
# Another solution is to reshape w to be a column vector of shape (2, 1);
# we can then broadcast it directly against x to produce the same
# output.
print(x + np.reshape(w, (2, 1)))
 
# Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
# [[ 2  4  6]
#  [ 8 10 12]]
print(x * 2)

5. Matplotlib

主要用于画图
import numpy as np
import matplotlib.pyplot as plt
 
# Compute the x and y coordinates for points on a sine curve
x = np.arange(0, 3 * np.pi, 0.1)
y = np.sin(x)
 
# Plot the points using matplotlib
plt.plot(x, y)
plt.show()  # You must call plt.show() to make graphics appear.

 

 

添加标签,题目,抬头

import numpy as np
import matplotlib.pyplot as plt
 
# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)
 
# Plot the points using matplotlib
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
plt.legend(['Sine', 'Cosine'])
plt.show()

subplot()将多幅图放置一起


# Compute the x and y coordinates for points on sine and cosine curves
x = np.arange(0, 3 * np.pi, 0.1)
y_sin = np.sin(x)
y_cos = np.cos(x)
 
# Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2, 1, 1)
 
# Make the first plot
plt.plot(x, y_sin)
plt.title('Sine')
 
# Set the second subplot as active, and make the second plot.
plt.subplot(2, 1, 2)
plt.plot(x, y_cos)
plt.title('Cosine')
 
# Show the figure.
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值