Python容器和 Numpy库基础
这是CS223图像识别的补充的python和Numpy库的基础课程,我稍微做了整理,原文链接:http://cs231n.github.io/python-numpy-tutorial/#python
1. 运算符//,
" // "来表示整数除法,返回不大于结果的一个最大的整数,而" / " 则单纯的表示浮点数除法
例如: 5//2 = 2
2. 字符串的运用
s = "hello"
print(s.capitalize()) # Capitalize a string; prints "Hello"
print(s.upper()) # Convert a string to uppercase;prints "HELLO"
print(s.rjust(7)) #Right-justify a string, padding with spaces; prints " hello"
print(s.center(7)) #Center a string, padding with spaces; prints " hello "
print(s.replace('l', '(ell)')) #Replace all instances of one substring with another;
# prints"he(ell)(ell)o"
print(' world '.strip()) # Strip leading and trailing whitespace; prints "world"
3. 容器-Lists
an contain elements of different types:如:[1,2,”jk”,]
切割:
print(nums[2:4])# Get a slice from index 2 to 4 (exclusive); prints "[2, 3]"
print(nums[2:])# Get a slice from index 2 to the end; prints "[2, 3, 4]"
print(nums[:2])# Get a slice from the start to index 2 (exclusive); prints "[0, 1]"
print(nums[:])# Get a slice of the whole list; prints "[0, 1, 2, 3, 4]"
print(nums[:-1])# Slice indices can be negative; prints "[0, 1, 2, 3]"
nums[2:4]=
[8,
9]
# Assign a new sublist to a slice
print(nums)
# Prints "[0, 1, 8, 9, 4]"
循环:
animals=
['cat',
'dog',
'monkey']
foridx,
animal
in
enumerate(animals):
print('#%d: %s'
%
(idx
+
1,
animal))
# Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line
可以对列表进行各元素统一处理不需要循环
nums=
[0,
1,
2,
3,
4]
squares=
[x
**
2
for
x
in
nums]
print(squares)
# Prints [0, 1, 4, 9, 16]
nums=
[0,
1,
2,
3,
4]
even_squares=
[x
**
2
for
x
in
nums
if
x
%
2
==
0]
print(even_squares)
# Prints "[0, 4, 16]"
4. 容器-Dictionaries(字典)
A dictionary stores (key, value) pairs,注意Get的用法
d=
{'cat':
'cute',
'dog':
'furry'}
# Create a new dictionary with some data
d['fish']=
'wet'
# Set an entry in a dictionary
print(d['fish'])# Prints "wet"
# print(d['monkey']) # KeyError: 'monkey' not a key of d
print(d.get('monkey','N/A'))
# Get an element with a default; prints "N/A"
print(d.get('fish','N/A'))
# Get an element with a default; prints "wet"
deld['fish']
# Remove an element from a dictionary
print(d.get('fish','N/A'))
# "fish" is no longer a key; prints "N/A"
循环:(默认是索引,d.iteme对应索引和内容)
d=
{'person':
2,
'cat':
4,
'spider':
8}
foranimal
in
d:
legs
=
d[animal]
print('A %s has %d legs'
%
(animal,
legs))
# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"
d=
{'person':
2,
'cat':
4,
'spider':
8}
foranimal,
legs
in
d.items():
print('A %s has %d legs'
%
(animal,
legs))
# Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"
nums=
[0,
1,
2,
3,
4]
even_num_to_square=
{x:
x
**
2
for
x
in
nums
if
x
%
2
==
0}
print(even_num_to_square)
# Prints "{0: 0, 2: 4, 4: 16}"
5. 容器-Set(不同元素的无序集合)
如:animals=
{'cat',
'dog'}
frommath
import
sqrt
nums=
{int(sqrt(x))
for
x
in
range(30)}
print(nums)
# Prints "{0, 1, 2, 3, 4, 5}"
注意set不能像Lists那样数字索引获得内容
6. 容器-Tuples元组
A tuple is an (immutable) ordered list of values.
与Lists不同的地方是:可以作为字典的索引 和 set的元素
d=
{(x,
x
+
1):
x
for
x
in
range(10)}
# Create a dictionary with tuple keys
t=
(5,
6)
# Create a tuple
print(type(t))# Prints "<class 'tuple'>"
print(d[t])# Prints "5"
print(d[(1,2)])
# Prints "1"
Numpy库
1. Arrays(注意要使用Array, import numpy)
注意.shape() 获得
importnumpy
as
np
a=
np.array([1,
2,
3])
# Create a rank 1 array
print(type(a))# Prints "<class 'numpy.ndarray'>"
print(a.shape)# Prints "(3,)"
print(a[0],a[1],
a[2])
# Prints "1 2 3"
a[0]=
5
# Change an element of the array
print(a)# Prints "[5, 2, 3]"
b=
np.array([[1,2,3],[4,5,6]])
# Create a rank 2 array
print(b.shape)# Prints "(2, 3)"
print(b[0,0],
b[0,
1],
b[1,
0])
# Prints "1 2 4"
常用的Array
importnumpy
as
np
a=
np.zeros((2,2))
# Create an array of all zeros
print(a)# Prints "[[ 0. 0.]
# [ 0. 0.]]"
b=
np.ones((1,2))
# Create an array of all ones
print(b)# Prints "[[ 1. 1.]]"
c=
np.full((2,2),
7)
# Create a constant array
print(c)# Prints "[[ 7. 7.]
# [ 7. 7.]]"
d=
np.eye(2)
# Create a 2x2 identity matrix
print(d)# Prints "[[ 1. 0.]
# [ 0. 1.]]"
e=
np.random.random((2,2))
# Create an array filled with random values
print(e)# Might print "[[ 0.91940167 0.08143941]
# [ 0.68744134 0.87236687]]"
与Lists类似,Arrays也可以切割检索
# Create the following rank 2 array with shape (3, 4)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]
a=
np.array([[1,2,3,4],
[5,6,7,8],
[9,10,11,12]])
# Two ways of accessing the data in the middle row of the array.
# Mixing integer indexing with slices yields an array of lower rank,
# while using only slices yields an array of the same rank as the
# original array:
row_r1=
a[1,
:]
# Rank 1 view of the second row of a
row_r2=
a[1:2,
:]
# Rank 2 view of the second row of a
print(row_r1,row_r1.shape)
# Prints "[5 6 7 8] (4,)"
print(row_r2,row_r2.shape)
# Prints "[[5 6 7 8]] (1, 4)"
整合Array: allows youto construct arbitrary arrays using the data from another array.
importnumpy
as
np
a=
np.array([[1,2],
[3,
4],
[5,
6]])
# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0,1,
2],
[0,
1,
0]])
# Prints "[1 4 5]"
# The above example of integer array indexing is equivalent to this:
print(np.array([a[0,0],
a[1,
1],
a[2,
0]]))
# Prints "[1 4 5]"
为了便于理解可以把array写成矩阵样式
# Create a new array from which we will select elements
a=
np.array([[1,2,3],
[4,5,6],
[7,8,9],
[10,
11,
12]])
print(a)# prints "array([[ 1, 2, 3],
# [ 4, 5, 6],
# [ 7, 8, 9],
# [10, 11, 12]])"
# Create an array of indices
b=
np.array([0,
2,
0,
1])
# Select one element from each row of a using the indices in b
print(a[np.arange(4),b])
# Prints "[ 1 6 7 11]"
# Mutate one element from each row of a using the indices in b
a[np.arange(4),b]
+=
10
print(a)# prints "array([[11, 2, 3],
# [ 4, 5, 16],
# [17, 8, 9],
# [10, 21, 12]])
注:numpy中的arange() 和 python自带的range()相似,不过一个返回array,一个返回list
同时也可以用 布尔bool 进行整合
a=np.array([[1,2],[3,
4],
[5,
6]])
bool_idx=
(a
>
2)
# Find the elements of a that are bigger than 2;
# this returns a numpy array of Booleans of the same
# shape as a, where each slot of bool_idx tells
# whether that element of a is > 2.
print(bool_idx)# Prints "[[False False]
# [ True True]
# [ True True]]"
# We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx])# Prints "[3 4 5 6]"
# We can do all of the above in a single concise statement:
print(a[a>
2])
# Prints "[3 4 5 6]"
2.Datatypes
importnumpy
as
np
x=
np.array([1,
2])
# Let numpy choose the datatype
print(x.dtype)# Prints "int64"
x=
np.array([1.0,
2.0])
# Let numpy choose the datatype
print(x.dtype)# Prints "float64"
x=
np.array([1,
2],
dtype=np.int64)
# Force a particular datatype
print(x.dtype)
# Prints "int64"
3.Array的数学运算
数学运算符同样可以运用到Array中,将对应元素进行运算即可
import numpy as np
x = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)
# Elementwise sum; both produce the array
# [[ 6.0 8.0]
# [10.0 12.0]]
print(x +y)
print(np.add(x,y))
# Elementwise difference; both produce the array
# [[-4.0 -4.0]
# [-4.0 -4.0]]
print(x -y)
print(np.subtract(x,y))
# Elementwise product; both produce the array
# [[ 5.0 12.0]
# [21.0 32.0]]
print(x *y)
print(np.multiply(x,y))
# Elementwise division; both produce the array
# [[ 0.2 0.33333333]
# [ 0.42857143 0.5 ]]
print(x /y)
print(np.divide(x,y))
# Elementwise square root; produces the array
# [[ 1. 1.41421356]
# [ 1.73205081 2. ]]
print(np.sqrt(x))
注意:*与MATLAB中不同,向量矩阵乘在numpy中用dot()
import numpy as np
x = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])
v = np.array([9,10])
w = np.array([11, 12])
# Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v,w))
# Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x,v))
# Matrix / matrix product; both produce the rank 2 array
# [[19 22]
# [43 50]]
print(x.dot(y))
print(np.dot(x,y))
一些常用函数:sum(),.T()
x = np.array([[1,2],[3,4]])
print(np.sum(x)) # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0)) #Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1)) #Compute sum of each row; prints "[3 7]"
x = np.array([[1,2], [3,4]])
print(x) # Prints "[[1 2]
# [3 4]]"
print(x.T) # Prints "[[1 3]
# [2 4]]"
# Note that taking the transpose of a rank 1 array does nothing:
v = np.array([1,2,3])
print(v) # Prints "[1 2 3]"
print(v.T) # Prints "[1 2 3]"
4.Broadcasting广播机制
一定要注意,执行 broadcast 的前提在于,两个 ndarray 执行的是 element-wise(按位加,按位减)的运算
注意的几条规则:
(1)如果数组不具有相同的秩,则先将低层数组的形状用1表示,直到两个形状都有相同的长度。
# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x=
np.array([[1,2,3],
[4,5,6],
[7,8,9],
[10,
11,
12]])
v=
np.array([1,
0,
1])
y=
x
+
v
# Add v to each row of x using broadcasting
print(y)# Prints "[[ 2 2 4]
# [ 5 5 7]
# [ 8 8 10]
# [11 11 13]]"
(2)两个数组要是相容的(即shape相同)或其中数组有维度为1
维度有1的Array操作时对应另一数组的该维度的每一行( were copiedalong that dimension)
注意reshape()的运用
# Compute outer product of vectors
v=
np.array([1,2,3])
# v has shape (3,)
w=
np.array([4,5])
# w has shape (2,)
# To compute an outer product, we first reshape v to be a column
# vector of shape (3, 1); we can then broadcast it against w to yield
# an output of shape (3, 2), which is the outer product of v and w:
# [[ 4 5]
# [ 8 10]
# [12 15]]
print(np.reshape(v,(3,
1))
*
w)
# Add a vector to each row of a matrix
x=
np.array([[1,2,3],
[4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:
# [[2 4 6]
# [5 7 9]]
print(x+
v)
# Add a vector to each column of a matrix
# x has shape (2, 3) and w has shape (2,).
# If we transpose x then it has shape (3, 2) and can be broadcast
# against w to yield a result of shape (3, 2); transposing this result
# yields the final result of shape (2, 3) which is the matrix x with
# the vector w added to each column. Gives the following matrix:
# [[ 5 6 7]
# [ 9 10 11]]
print((x.T+
w).T)
# Another solution is to reshape w to be a column vector of shape (2, 1);
# we can then broadcast it directly against x to produce the same
# output.
print(x+
np.reshape(w,
(2,
1)))
# Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
# [[ 2 4 6]
# [ 8 10 12]]
print(x*
2)
5. Matplotlib
主要用于画图
importnumpy
as
np
importmatplotlib.pyplot
as
plt
# Compute the x and y coordinates for points on a sine curve
x=
np.arange(0,
3
*
np.pi,
0.1)
y=
np.sin(x)
# Plot the points using matplotlib
plt.plot(x,y)
plt.show()
# You must call plt.show() to make graphics appear.
添加标签,题目,抬头
importnumpy
as
np
importmatplotlib.pyplot
as
plt
# Compute the x and y coordinates for points on sine and cosine curves
x=
np.arange(0,
3
*
np.pi,
0.1)
y_sin=
np.sin(x)
y_cos=
np.cos(x)
# Plot the points using matplotlib
plt.plot(x,y_sin)
plt.plot(x,y_cos)
plt.xlabel('x axis label')
plt.ylabel('y axis label')
plt.title('Sine and Cosine')
plt.legend(['Sine','Cosine'])
plt.show()
subplot()将多幅图放置一起
# Compute the x and y coordinates for points on sine and cosine curves
x=
np.arange(0,
3
*
np.pi,
0.1)
y_sin=
np.sin(x)
y_cos=
np.cos(x)
# Set up a subplot grid that has height 2 and width 1,
# and set the first such subplot as active.
plt.subplot(2,1,
1)
# Make the first plot
plt.plot(x,y_sin)
plt.title('Sine')
# Set the second subplot as active, and make the second plot.
plt.subplot(2,1,
2)
plt.plot(x,y_cos)
plt.title('Cosine')
# Show the figure.
plt.show()