matlab练习程序(图像Haar小波变换)

原文地址为: matlab练习程序(图像Haar小波变换)

关于小波变换我只是有一个很朴素了理解。不过小波变换可以和傅里叶变换结合起来理解。

傅里叶变换是用一系列不同频率的正余弦函数去分解原函数,变换后得到是原函数在正余弦不同频率下的系数。

小波变换使用一系列的不同尺度的小波去分解原函数,变换后得到的是原函数在不同尺度小波下的系数。

不同的小波通过平移与尺度变换分解,平移是为了得到原函数的时间特性,尺度变换是为了得到原函数的频率特性。

小波变换步骤:

1.把小波w(t)和原函数f(t)的开始部分进行比较,计算系数C。系数C表示该部分函数与小波的相似程度。

2.把小波向右移k单位,得到小波w(t-k),重复1。重复该部知道函数f结束.

3.扩展小波w(t),得到小波w(t/2),重复步骤1,2.

4.不断扩展小波,重复1,2,3.

我这里使用的haar小波,缩放函数是[1 1],小波函数是[1 -1]。是最简单的小波了。

先看看分解的效果,这次我选用了大图:

尺度为2的全分解小波包:

下面是matlab代码:

main.m

clear all;
close all;
clc;

img
=double(imread('Lena (2).jpg'));
[m n]
=size(img);

[LL LH HL HH]
=haar_dwt2D(img); %当然dwt2(img,'haar')是一样的,我只是想明白细节
img
=[LL LH;HL HH]; %一层分解

imgn
=zeros(m,n);
for i=0:m/2:m/2
for j=0:n/2:n/2
[LL LH HL HH]
=haar_dwt2D(img(i+1:i+m/2,j+1:j+n/2)); %对一层分解后的四个图像分别再分解
imgn(i
+1:i+m/2,j+1:j+n/2)=[LL LH;HL HH];
end
end

imshow(imgn)

haar_dwt2D.m

function [LL LH HL HH]=haar_dwt2D(img)
[m n]
=size(img);
for i=1:m %每一行进行分解
[L H]
=haar_dwt(img(i,:));
img(i,:)
=[L H];
end
for j=1:n %每一列进行分解
[L H]
=haar_dwt(img(:,j));
img(:,j)
=[L H];
end
%本来分解不应该加mat2gray的,不过为了有好的显示效果就加上了
LL
=mat2gray(img(1:m/2,1:n/2)); %行列都是低频
LH
=mat2gray(img(1:m/2,n/2+1:n)); %行低频列高频
HL
=mat2gray(img(m/2+1:m,1:n/2)); %行高频列低频
HH
=mat2gray(img(m/2+1:m,n/2+1:n)); %行列都是高频

end

haar_dwt.m

function [L H]=haar_dwt(f)  %显然,我没有做边界处理,图片最好是2^n*2^n型的
n
=length(f);
n
=n/2;
L
=zeros(1,n); %低频分量
H
=zeros(1,n); %高频分量
for i=1:n
L(i)
=(f(2*i-1)+f(2*i))/sqrt(2);
H(i)
=(f(2*i-1)-f(2*i))/sqrt(2);
end

end

参考:

http://amath.colorado.edu/courses/5720/2000Spr/Labs/Haar/haar.html

http://www.cs.ucf.edu/~mali/haar/

http://wenku.baidu.com/view/7839b821aaea998fcc220eed.html


转载请注明本文地址: matlab练习程序(图像Haar小波变换)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值