IoT Analytics | 2021 年 IoT 物联网状况和预期:设备增长 9%,其中蜂窝设备超过 20 亿台...

尽管面临芯片短缺和COVID-19的挑战,物联网市场持续增长,2021年全球IoT设备数量预估达123亿,蜂窝物联网超过20亿连接。到2025年,物联网连接数可能超过270亿。5G、Wi-Fi6和LPWA等新技术推动设备连接,授权LPWA超越非授权LPWA。2021年上半年,NB-IoT连接增长显著,成为LPWA市场主导。主要应用包括资产跟踪、监控和智能电表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

尽管芯片短缺和 COVID-19 对供应链的影响扩大,物联网市场仍在继续增长。到 2021 年,IoT Analytics 预计全球联网的 IoT 设备数量将增长 9%,达到 123 亿个活动终端,蜂窝物联网现已超过 20 亿。到 2025 年,物联网连接数可能会超过 270 亿

b7127f88b082b9ca6e1ab51ad56c6694.png

两个关键因素导致增长曲线出现凹痕:

COVID-19 大流行: 

受疫情生产有时会停止,供应链和原材料供应不完整。许多物联网计划在 2020 年停止或被取消。2021 年,疫情的影响继续对某些地区产生重大影响,导致更多供应链问题,例如缺乏船只和集装箱以及港口拥堵。

芯片短缺:

受疫情影响,芯片供应能力无法满足全球芯片需求,预计将成为未来两年的一个持续因素。芯片短缺首先影响了汽车行业,然后扩展到其他领域,如智能手机、电视、游戏和物联网

从连接的角度来看,5G、Wi-Fi 6 和 LPWA 等新技术标准正在推动设备连接。

蜂窝物联网市场深度挖掘:到 2021 年Q2将达到 20 亿个活跃连接

2021 年上半年,使用蜂窝技术的联网物联网设备数量同比增长 18%,达到 20 亿台。中国移动、中国电信和中国联通联手几乎占到了3/4的市场。

ed288ba6d8cbfbb95264ee4a56d403a4.png

在蜂窝技术方面,2G 和 3G 物联网连接的下降仍在继续,而 5G 连接的大规模部署预计将于今年开始。由于LTE-Cat.1在细分市场的采用率更高,4G LTE连接同比增长 25%。

授权 LPWA 市场超过 非授权 LPWA,成为大趋势

2021年,授权的 LPWA 以 54% 的份额领先,而非授权 LPWA 仅有 46% 的份额。一个关键原因是 NB-IoT 连接在 2021 年上半年同比增长 75%。NB-IoT 作为单一技术现在以 44% 的市场份额主导 LPWA 连接市场,而 LoRa 以 37% 的全球份额下滑至第2位连接。

2021年,资产跟踪和监控是非授权 LPWA 增长的关键应用,而智能电表、建筑和基础设施行业垂直应用推动了 NB-IoT 的增长。    

9bfa36b0f88c064a38c621d74b881033.png

IoT Analytics 预计,NB-IoT LoRa/LoRaWAN 将在未来五年内继续主导市场,LTE-M 和 Sigfox 分别排在第三和第四位。虽然其他技术将继续存在,但它们似乎不会在整个全球市场中发挥重要作用,尽管它们对某些利基应用仍然具有吸引力。

往期推荐

1、HarmonyOS 到底是不是Android套壳?

2、5G将是一个彻底失败的通信技术吗?

3、AWS IoT 物联网平台 MQTT 通讯模式

4、2021中国 IoT物联网平台对比报告

c29b7b056c67a71de131f2b3d6693df7.gif

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值