项目源码,文末联系小编
在停车场、小区出入口、高速收费站,我们经常看到自动识别车牌的闸机,用于记录车辆的车牌号码、出入时间,可实现自动化、规范化管理,有效降低人力成本和通行卡证制作成本,大幅度提升管理效率,那么车牌识别是如何工作的呢?
车牌识别技术跨越了图像处理、模式识别、机器学习等多个学科领域,且要求该系统在各种复杂多变的实际应用场景中都能保持高度的准确性和鲁棒性。车牌识别分为两个过程,先是使用 YOLO 目标检测算法进行车牌检测定位,然后应用 LPRNet 算法完成车牌字符识别。
01
YOLO 目标检测算法
YOLO(You Only Look Once)算法采用一个单独的CNN模型实现end-to-end的目标检测,整个系统如上图所示:首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络预测结果得到检测的目标。相比R-CNN算法,其是一个统一的框架,其速度更快,而且 YOLO 的训练过程也是end-to-end的。
YOLO采用卷积网络来提取特征,然后使用全连接层来得到预测值。网络结构参考GooLeNet模型&#x