- 博客(5)
- 收藏
- 关注
原创 基于支持向量机的分类实验与参数敏感性分析 —— 以 ex6data1 与 ex6data2 数据集为例
本文通过ex6data1和ex6data2数据集研究了支持向量机(SVM)的参数敏感性。在线性核SVM实验中,发现惩罚系数C过小会导致欠拟合,过大则引发过拟合;在高斯核SVM实验中,核参数γ影响模型对非线性特征的捕捉能力,γ过小导致欠拟合,过大则造成过拟合。实验采用可视化方法直观展示了不同参数下模型的分类效果,验证了参数选择对SVM性能的关键影响。研究表明,参数调优需要根据数据特征平衡模型复杂度与泛化能力,为SVM的实际应用提供了参考依据。
2025-12-19 14:56:11
660
原创 从原理到落地:详细拆解朴素贝叶斯算法,手把手实现西瓜品质精准分类
在机器学习的分类算法中,朴素贝叶斯(Naive Bayes)以 “简单、高效、易实现” 著称,尤其适合小样本、多特征、类别明确的场景。对于 “判断西瓜好坏” 这类问题:1、特征维度适中(6 个离散特征 + 2 个连续特征);2、样本数量有限(仅 17 条训练样本);3、类别标签清晰(好瓜 / 坏瓜二分类);朴素贝叶斯无需复杂的迭代训练,仅通过概率计算即可完成分类,且推理过程直观,非常适合作为入门实战案例。本文将从。
2025-12-08 15:26:53
690
原创 从零实现 ID3 与 C4.5 决策树(含剪枝优化):基于贷款数据集的实践教程
本文从零实现ID3和C4.5决策树算法,并以贷款审批数据集为例进行实践。文章首先介绍决策树核心概念,包括ID3的信息增益、C4.5的信息增益比及剪枝原理。然后详细解析16条训练样本和7条测试样本的特征编码与业务背景。在代码实现部分,展示了数据加载模块和ID3决策树的核心功能,包括信息熵计算、特征选择、树构建等方法。通过完整的理论推导和代码实践,帮助读者深入理解决策树算法原理与工程实现。
2025-10-30 20:29:48
1559
原创 从零实现KNN算法:约会对象分类器与模型全流程分析
本文介绍了KNN算法的基本原理及在约会对象分类任务中的实现。KNN算法通过计算待预测样本与训练集样本的距离,选取最近的K个邻居进行投票决策。文章详细解析了欧氏距离和曼哈顿距离的计算方法,并提供了完整的Python实现代码。该代码包含数据加载、特征归一化、KNN核心算法(距离计算、邻居选择、投票分类)以及模型评估指标(准确率、ROC曲线等)。通过约会数据集(包含三类喜好程度标签和三个特征),演示了如何从零构建一个KNN分类器,并计算多分类评估指标。
2025-10-25 01:14:11
1518
原创 Anaconda编译环境配置超详细教程
在机器学习、数据分析等领域,一个稳定且独立的Python编译环境至关重要。Anaconda作为常用的Python环境管理工具,能轻松创建、管理多个虚拟环境,避免不同项目间的依赖冲突。本文将从Anaconda下载、安装,到虚拟环境的创建与激活,手把手带你完成编译环境配置!!!
2025-09-18 23:27:26
1416
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅