- 博客(17)
- 收藏
- 关注
原创 Java开发基础(三)
生产者(Productor)将产品交给店员(Clerk),而消费者(Customer)从店员处取走产品,店员一次只能持有固定数量的产品(比如:20),如果生产者试图生产更多的产品,店员会叫生产者停一下,如果店中有空位放产品了再通知生产者继续生产;int index0f(String str, int fromIndex): 返回指定子字符串在此字符串中第- 次出现处的索引。1.死锁的理解:不同的线程分别占用对方需要的同步资源不放弃, 都在等待对方放弃自己需要的同步资源,就形成了线程的死锁。
2023-03-10 22:24:01 58
原创 ESRGAN:增强型超分辨率生成对抗网络
超分辨率生成对抗网络(SRGAN)[1]是一项开创性的工作,能够在单图像超分辨率期间生成逼真的纹理。然而,产生幻觉的细节往往伴随着令人不快的人工制品。为了进一步提高视觉质量,我们深入研究了SRGAN的三个关键组件——网络架构、对抗性损失和感知损失,并对每一个组件进行改进,以获得增强型SRGAN(ESRGAN)。特别地,我们引入了没有批量归一化的残余密集块(RRDB)中的残余作为基本网络构建单元。此外,我们借用相对论GAN[2]的思想,让鉴别器预测相对真实性,而不是绝对值。
2022-11-23 22:28:02 1296
原创 使用生成对抗网络的照片真实单图像超分辨率(SRGAN)
提出基于优化的超分辨率方法的行为主要由目标函数的选择驱动,工作主要集中在最小化均方重建误差。所得到的估计值具有较高的峰值信噪比,但它们通常缺乏高频细节,并且在感觉上不令人满意,因为它们无法匹配较高分辨率下的预期保真度。文章提出SRGAN,一种用于图像超分辨率(SR)的生成对抗网络(GAN)。提出了一个感知损失函数,它由对抗性损失和内容损失组成。对抗性损失将我们的解决方案推向自然图像流形,使用经过训练的鉴别器网络来区分超分辨率图像和原始照片逼真图像。
2022-11-23 21:51:54 1510
原创 Java开发基础(二)
体会2开发中,由于运行时异常比较常见,所以我们通常就不针对运行时异常编写try-catch-finally了。执行的方法a中,先后又调用了另外的几个方法,这几个方法是递进关系执行的。如果父类中被重写的方法没有throws方式处理异常,则子类重写的方法也不能使用throws,意味着如果。一旦当方法体执行时,出现异常,仍会在异常代码处生成-一个异常类的对象,此对象满足throws后异常。子类重写的方法中有异常,必须使用try-catch-finally方式处理。针对于编译时异常,我们说一定要考虑异常的处理。..
2022-07-29 22:55:29 266
原创 Java开发基础(一)
Java开发入门准备 提示:观看尚硅谷视频所做的笔记文章目录Java开发入门准备总结总结学习:按照721来安排,7是在工作中学习,2是向他人学习,1是自学。看视频双核处理,边听讲,边思考,边做笔记。第一层:听得懂,第二层:练得熟;三分看,七分练。至少两边,最好三遍,第一遍看着写,第二遍自己尝试写,第三遍纯自己写(不会的不看老师的,自己查,自己debug)。资料在微信公众号上。尚硅谷链接........................
2022-07-11 23:06:40 314
原创 图神经网络(GNN)基础
提示:用作学习笔记,顺便分享,侵删文章目录前言一、图的基本概念1. 图的表示2. 图的实例3. 图的应用4. 使用图面临的挑战二、图神经网络基础(GNN)1.最简单的GNN2. pooling操作(汇集操作)3. 在图表各个部分之间传递消息三、GNN playground(作者文章的实验部分)四、GNN相关技术1. 其他类型的图2. GNN种图的采样和batch3. inductive biases(归纳偏置)4. GCN和MPNN5. 点和边做对偶6. GAT(Graph Attention Net.
2022-05-04 16:47:00 1748
原创 基于元学习和自我监督的图像翻译预训练
提示:系读文章的笔记,侵删。文章目录前言一、摘要二、结论与展望1.结论:新的少镜头多任务图像到图像的转换2.展望:提高性能和稳定性三、介绍四. 背景和相关工作4.1 数据集(风暴事件图像)4.2 评估4.3 生成对抗网络五、小样本的框架和我们的基准前言这篇文章是做实验途中,师兄推荐的,ICLR2022的文章,在4月29日的海报会议上。刚开始写这篇文章时,会议还未举办。文章是在21年12月份传到arxiv上的。目的是为了记录文章,感觉对自己的实验应该有所帮助。文章链接代码链接提示:以下是.
2022-04-29 22:27:04 1462
原创 物理增强的深度学习模型改善卫星图像对热带气旋强度和大小估计(翻译)
提示:系学习使用,侵删文章目录前言一、摘要二、结论总结前言师兄在我做实验期间推荐的文章文章利用红外图像生成一、摘要介绍了一种基于深度学习的方法,称为(DeepTCNet)。该方法利用热带气旋(TCs)的先验知识,从北大西洋上空的红外(IR)图像估计热带气旋强度和风半径。虽然标准的深度学习实践与传统的分析方法相比有许多优点,可以产生可靠的TCs估计值,但由机器可读的TCs物理知识提供信息的数据驱动模型可以实现更高的性能。为此,我们探索了两种开发物理增强型DeepTCNet的方法:(i)将T.
2022-04-12 17:05:42 4536
原创 A ConvNet for the 2020s 学习笔记
说明:系新手,写文章帮助学习ContentsA ConvNet for the 2020s 学习笔记一、pandas是什么?二、使用步骤1.引入库2.读入数据总结A ConvNet for the 2020s 学习笔记说明:只为学习记录,有误望见谅指正,侵删例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一.
2022-04-08 23:13:55 2069
原创 Swin trasnformer 学习笔记
提示:Swin transformer 学习笔记,仅供学习记录,方便日后回顾,侵删文章目录前言一、主要贡献1.如何抓住多尺度特征2. 滑动窗口和窗口自注意力二、网络主干1.模型整体架构2.怎样提高移动窗口的计算效率:采用masking(掩码)的方式计算自注意力3. 相对位置编码三、其他知识补充:1.Test time augmentation(TTA)2. 神经架构搜索(Neural Architecture Search,NAS)3. 归纳偏置(inductive bias)前言文章只供自己学.
2022-04-08 21:33:12 1754
原创 pytorch 初始化
文章目录前言一、初始化整个模型二、利用apply1. 判断实例对象类型,利用isinstance()2. 通过类名判断总结前言记录,如何使用pytorch初始化。一、初始化整个模型pytorch 官方resnet代码for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
2022-04-07 16:57:53 2101
原创 如何阅读论文——经验总结
文章目录前言一、粗读二、精读1.第一遍2.第二遍TIPS前言说明:文章突发奇想,看到沐神的精读论文合集中有关如何读论文,想结合记录一下自己的读论文思路主要结合沐神和之前看到过的一些读论文帖子,结合自己的看论文经验,总结一下适合自己的看论文方式。一、粗读都知道论文需要精读和粗读结合,但是不要把这两个过程分开。老师让你去读100篇文章,不是一开始就划分好,哪些精读,哪些粗读。因为,你精读一篇文章,肯定包含了粗读的过程,这是一个渐进的过程。拿到一篇文章,先粗度,再决定是否精读。最后累积读完100篇文
2022-04-06 18:11:55 655
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人