自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 tensorflow2.0gpu版本 自定义模型提高GPU利用率

使用tensorflow2.0进行cifar100数据集的图像分类时发现GPU的使用率始终不高,且波动较大,在网上查询资料后尝试从数据处理和使用@tf.function图执行模式入手,其中模型结构使用ResNet18,电脑配置显卡为2070super,CPU为AMD2600。参考资料:ResNet模型参考:https://blog.csdn.net/abc13526222160/article/details/90057121数据处理参考:https://tf.wiki/zh_hans/bas...

2020-06-16 21:24:48 2758 1

原创 损失函数binary_crossentropy和categorical_crossentropy在单标签多分类模型中评价效果差异较大的原因

在cifar100数据集进行分类建模的时候在相同模型和数据上发现损失函数binary_crossentropy和categorical_crossentropy在测试集上效果差异较大,在网上多方查阅之后发现原因如下,参考来源https://zhuanlan.zhihu.com/p/48078990原文如下在运行keras的代码时,发现一个有趣的现象,当使用binary_crossentropy和categorical_crossentropy时,其日志中输出的acc有较大差异,后经多方查阅,发现原因

2020-06-03 15:57:10 5444

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除