1519. Formula 1 (插头DP,求哈密顿回路)

本文探讨了一种解决Formula1竞赛地图生成问题的算法。该问题要求在一个N*M的网格中寻找所有可能的哈密顿回路,同时避免覆盖特定位置的地鼠洞。通过运用状态压缩、轮廓线和HASH等技术,文章提供了一个详细的解决方案,并附带实现代码。
摘要由CSDN通过智能技术生成

1519. Formula 1

Time limit: 1.0 second
Memory limit: 64 MB

Background

Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic games of 20**, it is well-known, that the city will conduct one of the Formula 1 events. Surely, for such an important thing a new race circuit should be built as well as hotels, restaurants, international airport - everything for Formula 1 fans, who will flood the city soon. But when all the hotels and a half of the restaurants were built, it appeared, that at the site for the future circuit a lot of gophers lived in their holes. Since we like animals very much, ecologists will never allow to build the race circuit over the holes. So now the mayor is sitting sadly in his office and looking at the map of the circuit with all the holes plotted on it.

Problem

Who will be smart enough to draw a plan of the circuit and keep the city from inevitable disgrace? Of course, only true professionals - battle-hardened programmers from the first team of local technical university!.. But our heroes were not looking for easy life and set much more difficult problem: "Certainly, our mayor will be glad, if we find how many ways of building the circuit are there!" - they said.
It should be said, that the circuit in Vologda is going to be rather simple. It will be a rectangle  N* M cells in size with a single circuit segment built through each cell. Each segment should be parallel to one of rectangle's sides, so only right-angled bends may be on the circuit. At the picture below two samples are given for  N =  M = 4 (gray squares mean gopher holes, and the bold black line means the race circuit). There are no other ways to build the circuit here.
Problem illustration

Input

The first line contains the integer numbers  N and  M (2 ≤  NM ≤ 12). Each of the next  N lines contains  M characters, which are the corresponding cells of the rectangle. Character "." (full stop) means a cell, where a segment of the race circuit should be built, and character "*" (asterisk) - a cell, where a gopher hole is located. There are at least 4 cells without gopher holes.

Output

You should output the desired number of ways. It is guaranteed, that it does not exceed 2 63-1.

Samples

input output
4 4
**..
....
....
....
2
4 4
....
....
....
....
6

题目链接

题意:求N*M的格子中 有多少种哈密顿回路

分析:CDQ插头DP 论文第一道题,看了半年 ,搁置很久才开始写,今天终于写出来了。

做这道题前置技能:状态压缩+轮廓线+HASH。

在CDQ论文(基于连通性状态压缩的动态规划问题 )中已经把所有情况讲的很清楚了,

网上有两种写法,一种最小表示法,我用的是论文中的方法,括号法,3进制用4进制表示,贴出代码共参观,还有 TEST12 的数据。

代码:

#include<bits/stdc++.h>
#define mem(p,k) memset(p,k,sizeof(p));
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
const int N=14;
const int limitnum=1e6;
int mp[N][N],n,m;
int cur,tot[2],ei,ej;
int has[limitnum],bit[20];
ll state[2][limitnum],sum[2][limitnum];
char s[N];

void init(){
    mem(tot,0);
    mem(has,0);
    mem(state,0);
    mem(sum,0);
    mem(mp,0);
    ei=ej=-1;
    for(int i=0;i<n;i++){
            scanf("%s",s);
            for(int j=0;j<m;j++){
                    mp[i][j]= (s[j]=='.');
                    if(mp[i][j])ei=i,ej=j;
            }
    }

    for(int i=0;i<20;i++){
        bit[i]=i<<1;
    }
}

void update(ll s,ll val){
    int k=s%limitnum;
    while(has[k]){
        if(state[cur][has[k]]==s){
            sum[cur][has[k]]+=val;return;
        }
        k++;
        if(k==limitnum)k=0;
    }
    has[k]=++tot[cur];
    state[cur][tot[cur]]=s;
    sum[cur][tot[cur]]=val;
}
void dfs(int k){
    if(!k)return;
    dfs(k>>1);
    cout<<(k&1);
}
void solve(){
    cur=0;
    tot[cur]=1;
    state[cur][1]=0;
    sum[cur][1]=1;
    ll ans=0;
    for(int i=0;i<n;i++){
        for(int j=0;j<m;j++){
            cur^=1;
            mem(state[cur],0);
            mem(sum[cur],0);
            mem(has,0);
            tot[cur]=0;
            //cout<<i<<" "<<j<<" ::"<<endl;
            for(int k=1;k<=tot[cur^1];k++){
                int p=state[cur^1][k]&(3<<bit[j]);
                int q=state[cur^1][k]&(3<<bit[j+1]);
                ll f=state[cur^1][k],val=sum[cur^1][k];
                
                if(mp[i][j]){
                    if(p==0 && q==0){
                        if(mp[i][j+1] && mp[i+1][j])update(f|(1<<bit[j])|(2<<bit[j+1]),val);
                    }
                    else if(!p && q || p && !q){
                        if(p && mp[i+1][j] || q && mp[i][j+1])update(f,val);
                        f^=p|q;
                        p<<=2;
                        q>>=2;
                        if(p && mp[i][j+1] || q && mp[i+1][j])update(f|p|q,val);
                    }
                    else{
                        f^=q|p;
                        p>>=bit[j];
                        q>>=bit[j+1];
                        int sum=1,u;
                        if(p==1 && q==1){
                            for(u=j+2; u<m ;u++){
                                int cnt=f>>bit[u]&3;
                                if(cnt==1)sum++;
                                if(cnt==2)sum--;
                                if(sum==0){
                                    f-=1<<bit[u];
                                    break;
                                }
                            }
                            update(f,val);
                        }
                        else if(p==2 && q==2){
                            for(u=j-1; u>=0 ;u--){
                                int cnt=f>>bit[u]&3;
                                if(cnt==1)sum--;
                                if(cnt==2)sum++;
                                if(sum==0){
                                    f+=1<<bit[u];
                                    break;
                                }
                            }
                            update(f,val);
                        }
                        else if(p==2 && q==1){
                            update(f,val);
                        }
                        else{
                            if(ei==i && ej==j){
                                ans+=val;
                            }
                        }
                    }
                }
                else{
                    if(p+q==0){
                        update(f,val);
                    }
                }

            }

            if(ei==i && ej==j)break;
       }
        if(ei==i)break;

        for(int i=1;i<=tot[cur];i++)state[cur][i]<<=2;
    }
 
    cout<<ans<<endl;
}

int main(){

    while(~scanf("%d%d",&n,&m)){
        init();
        if(ei<0){
            cout<<0<<endl;continue;
        }
        solve();
    }

    return 0;
}

/*

12 12
............
............
............
............
............
............
............
............
............
............
............
............

10 10
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........

8 8
........
........
........
........
........
........
........
........
*/



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值