自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 LIDR激光点云

阅读、绘图、查询和验证。

2023-06-21 23:56:33 2238 1

原创 硕士生英语(科技论文写作)

目录language feature of academic textsLexical featuresStyle at the lexical levelNominalization Ways to realize nominalizationUse of hedgesSyntactic featureslmpersonal subjects How to realize depersonalizationIntroduction1.Definition of introduction (IMRD) 2.

2023-06-11 21:53:26 213

原创 R statistic analysis

matrix

2023-04-02 11:07:57 95

原创 全基因组关联分析 (GWAS)

多个个体基因型与表型(可观测的性状)进行统计学分析,根据统计量或显著性 p 值选出与表型相关的基因。

2023-03-31 12:08:22 284

原创 现代林业信息技术

高光谱机器学习,论文要汇报出,该技术能解决什么问题,文献统计软件,看课程。

2023-02-28 11:42:37 118

原创 经济林专题non-wood product forest

干果位为主,涉及三十多个树种。包括油茶、板栗、核桃、银杏、油桐、柿子、乌桕等木本粮油700万亩(21亿产值)生产果品、食用油料、饮料、调料、工业原料和药材为主要目的的林木。油料干果类:核桃、腰果、榛、澳洲坚果、阿月浑子。药材类:杜仲、肉桂、连翘、枸杞(甘肃)、金银花。用材林、经济林、防护林、薪炭林、特殊用途林。社会、经济、生态效益结合最好的林种。淀粉类干果类:柿、枣、板栗。银杏--含黄酮类黄酮物质。调料类:八角、肉桂、花椒。淀粉与糖类:橡子、木薯。

2023-02-24 09:31:01 156

原创 英语语法强化笔记

英语语法核心是动词。

2023-02-18 16:29:24 141

原创 python巩固笔记

对象是可变数据类型

2023-02-17 21:33:24 353

原创 图片调色学习

是光照射物体,经过反射后进入眼睛的光,物体吸收反射和空气反射中损失色彩,变灰。黄(yellow)、品红(magenta)、青(cyan),同时添加黑色用于印刷上。例子:一束白光穿过红色灯光纸,由于绿光和蓝紫光都被滤掉,故只透过了红光;其次穿过蓝色灯光纸时,由于红光也将被滤掉,故将会没有任何色光通过,即变黑。色相混合正红(0)+正黄(60),透明度为(50%)即红黄等比例混合=橙色(30)加色:颜色是单色,混的颜色越多就越亮直到变为白色。色相环上180°的对位上,颜射不共存,有红无青。颜料三原色:正片叠底。

2023-02-10 22:00:54 590

原创 机器学习算法实践

程序员:重点在如何应用(库的使用,完整项目如何构建,从头到尾的流程)Python库不用记,知道每个库能干什么就行,有哪些常用函数。深度学习是机器学习中神经网络算法的延伸,只不过应用的比较广。案例很重要,先模仿再创作,有套路,很少从头开始写。深度学习在计算机视觉和自然语言处理中更厉害一些。机器学习需要:算法、数据、程序、评估、应用。机器学习本质包含数学原理推导和实际应用技巧。高等数学基础很重要,通学一遍后边学变查即可。案例:GitHub、kaggle。弄清楚算法的推导及应用。学生:推导是重中之重。

2023-02-07 17:17:18 1398

原创 英语音标(Phonetic symbol)

英语音标

2023-01-28 14:18:57 203

原创 机器学习笔记

无监督学习是不知道数据具体的含义,比如给定一些数据但不知道它们具体的信息,对于分类问题无监督学习可以得到多个不同的聚类(聚类算法),从而实现预测的功能。这也说明了如果学习率α不改变,参数也可能收敛,假设偏导>0,因为偏导一直在向在减小,所以每次的步长也会慢慢减小,所以α不需要额外的减小。偏导数,用来计算当前参数对应代价函数的斜率,导数为正则θ减小,导数为负则θ增大,通过这样的方式可以使代价函数的函数值不断减小。通过分别对θ0和θ1,分别求偏导,获得梯度下降最大的方向。同时获得更新后的θ0和θ1。

2023-01-16 21:00:29 164

原创 python统计分析 学习笔记

python统计分析

2023-01-14 18:16:10 915 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除