这里介绍的是求a^b的运算。
常规思路:b个a相乘。
int pow(int a, int b){
int ans = 1;
for(int i = 1; i <= b; i ++){
ans *= a;
}
return ans;
}
但是当b很大时,复杂度很高,所以可以通过分奇偶来讨论。
当b是奇数时, a^b = a ^ (b/2) * a^(b/2) * a;
当b是偶数时,a^b = a ^ (b/2) * a^ (b/2);
写法一:
int pow(int a, int n){// 调用了这个函数, 递归
if(n == 0){
return 1;
}
if(n == 1){
return a;
}
double ret = pow(a, n /2); // pow(a, n >> 1)
ret *= ret;
if(n & 0x1){// n % 2 == 1
ret *= a;
}
return ret;
}
写法二:
int pow(int a, int n){// 非递归 a^n/2 * a^n/2 (* a)?根据是否是奇偶?
int ans = 1;
while(n > 0){
if(n % 2 == 1){
ans *= a;
}
n /= 2;
a *= a;
}
return ans;
}
此外你可以结合位运算,例如2^10 = 2^(1010),即将10写成二进制,下面就可一用1010的每一位&1,然后进行运算,注意移位。参考代码如下:
int pow(int a, int b){
int ans = 1;
while(b > 0){
if(b & 1){ // 同为1时才需要做
ans *= a;
}
b >>= 1;
a *= a;
}
return ans;
}
过程就是:a = 2 * 2 = 4;ans = 1 * 4 = 4, a = 4 * 4 = 16;a = 16 * 16 = 256; ans = 4 * 256 = 1024; ---- 输出ans。
很显然所用的时间要简单的多。
这个一般是结合快速幂的取余运算,形如a^b%1000。此时有一个结论:积的取余 = 取余后的积再取余。也就是说是某个因子取余之后再相乘再取余,余数保持不变。
那为什么要这么做呢?显然,a^b的结果计算,很容易就超过了int类型的存储界限。所以在计算过程中就对他取余不会导致越界,使得结果错误。
例题:求root(N, k)
题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k)。N'为N的k进制表示的各位数字之和。输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000) 。
输入描述: 每组测试数据包括一行,x(0<x<2000000000), y(0<y<2000000000), k(2<=k<=16)。
当然这里数学推导:
N=a0+a1*k+a2*k^2+……+an*k^n;
N'=a0+a1+a2+……+an;
N-N'=a1*(k-1)+a2*(k^2-1)+……+an*(k^n-1);
提取(k-1)有: (N-N')%(K-1)=0;
继续递推下去有:(N-N')%(k-1) =0;
(N'-N'')%(k-1)=0;
……
(N(r-1)-N(r))%(k-1)=0;
相加有:(N-N(r))%(k-1)=0,N(r)是我们要求的结果,故有N(r) = N % (k-1);
如果 N(r)==0 ,则 N(r) = k-1;
ac的代码(仅供参考):
#include<iostream>
#include<cstdio>
using namespace std;
long long root(long long base, long long exponent, long long k){
long long ret = 1;
base = base % k;
while(exponent > 0){
if(exponent % 2 == 1){
ret = (base * ret) % k;
}
exponent >>= 1;
base = (base * base) % k;
}
return ret;
}
int main(){
long long x, y, k, tmp;
while(cin >> x >> y >> k){
tmp = root(x, y, k - 1);
if(tmp == 0){
tmp = k - 1;
}
cout << tmp << endl;
}
return 0;
}