什么是决策树Decision Tree

决策树是一种有监督学习方法,用于分类和回归任务。它通过选择最佳特征进行逐步划分,构造出树状模型。文章介绍了决策树的树模型组成、训练与测试过程、常用的算法如ID3、C4.5和CART,以及如何处理连续值和剪枝策略。此外,还讨论了决策树在分类任务中如何决定类别和在回归任务中利用方差评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决策树(Decision Tree)

是一种非参数的有监督学习方法,它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。决策树算法容易理解,适用各种数据,在解决各种问题时都有良好表现,尤其是以树模型为核心的各种集成算法,在各个行业和领域都有广泛的应用。
我们来简单了解一下决策树是如何工作的。

一.树模型

1.决策树:从跟节点开始一步步走到叶子节点(决策)
2.所有的数据最终都会落到叶子结点,既可以做分类也可以做回归

在这里插入图片描述
如上图所示,有一家五口人,首先还是先来做分类,在分类任务当中,判断谁喜欢玩电脑游戏?这肯定是由数据当中的特征所决定的。假如现在有两个特征1.年龄age2.性别male,这两个特征都会对结果产生影响。如上右图构建的决策树,首先决策树是从上往下走,第一步通过判断age<15,Yes:有潜在愿意玩游戏的可能性,No:则无。第二部对性别male再一次判断,Yes:是男孩则判断为喜欢玩电脑游戏的,No:是女孩,则判断为不喜欢玩电脑游戏。这就是决策树解决问题的一个基本流程。

思考:为什么先判断年龄再判断性别?

决策树对于这个先后的顺序把控的非常严格。如果调换顺序最后的结果肯定是会发生变化的。————>先后顺序不能发生变化。

那为啥把年龄放第一个,性别放第二个?

这里做的分类任务,那得分两次去做。希望第一次去做的时候希望尽可能的都做对了,第二次做的时候再做细致一点的微调划分。就好似过滤一样,第一次要把绝大部分的东西过滤,第二次要把一些细致的东西过滤。在决策树当中也是遵循这一点。

这里选择的第一个特征(age)称:根节点,根节点的效果得是比较强的把它放在最前面,根节点可以进行一个大致的判断,接下来第二个判断来了,虽然没有根节点的能力强,但也能起到一个划分的作用,能帮助决策进一步的细化。
age<15相当于首发哈登,is male?相当于替补,那首发哈登能不先上场吗?
那凭什么哈登是首发?替补是替补?决策树就是要解决这样的问题。

树模型只能做分类?不!它是通用的,既可以做分类也可以做回归。树模型可以说是无所不能。树模型可以进行很多层面的扩展,随机森林,集成算法这些都是和树模型息息相关的,由基本的树模型一步一步演变出来的。

首先来了解树的组成:

在这里插入图片描述

根节点:第一个选择点
非叶子节点和分支:中间过程
叶子节点:最终的决策结果ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值