- 博客(2)
- 收藏
- 关注
原创 OpenMMLab AI 实战营第二期 第二次笔记
基本思路:一、基于回归将关键点检测问题建模成一个回归问题,让模型直接回归关键点的坐标,即(x1,y1..,.,.y)= f(I)一、基于热力图并不直接回归关键点的坐标,而是预测关键点位于每个位置的概率,即 H... = fo(I)H)(Ky,y)= 1表示关键点j位于(xj yj)的概率为1,H称为热力图,尺寸与原图Ⅰ相同或按比例缩小热力图可以基于原始关键点坐标生成,作为训练网络的监督信息网络预测的热力图也可以通过求极大值等方法得到关键点的坐标。
2023-06-05 01:05:40 128 1
原创 OpenMMLab AI 实战营第二期 第一次笔记
OpenMMLab致力于构建强大、灵活和易于使用的工具和框架,包括但不限于目标检测、图像分割、姿态估计、人脸识别、自然语言处理等领域。OpenMMLab是一个开源的计算机视觉和机器学习实验室,旨在促进计算机视觉和机器学习领域的研究和开发。它提供了一系列高质量的开源项目和工具,以帮助研究人员和开发者在计算机视觉和机器学习任务上快速构建和训练模型。它提供了交流和合作的平台,通过开源项目的开发和分享,推动了计算机视觉和机器学习领域的进步和创新。学员完成:CSDN笔记打卡, GitHub提交作业, 极市平台挑战。
2023-06-05 00:17:56 99 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人