计算机视觉实践 - 街景字符编码识别 关于Task1的一些笔记
最近参加了DataWhale的计算机视觉入门比赛,认识了很多大佬。虽然之前有过基于深度学习的一些实操经验,但对其中的原理还是不怎么懂,更别提模型的创新了。希望这次比赛过后,在理论和代码能力方面都能有所提高。
Task 1 赛题理解
- 赛题名称:零基础入门CV之街道字符识别
- 赛题目标:通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。
- 赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。
为了简化赛题难度,赛题数据采用公开数据集SVHN,因此大家可以选择很多相应的paper作为思路参考。
学习情况
-
查阅相关论文,阅读顺序打算是从定长字符识别到不定长字符识别,最后专业的解题思路是先检测再识别。这也是官方给出的不同阶段的解题思路。
这两天先看了CRNN和Baseline中的ResNet18的论文,等等奉上笔记。 -
试着跑了一下Baseline,还是有一些问题。
字符识别论文笔记
ResNet18
先来看一下Baseline中的检测框架
如上图所示,这个表示的是ResNet系列的结构,因为除了ResNet18, 还有Res34,Res50,Res101,Res152这些网络。
每个网络都包括三个主要部分:输入部分、输出部分和中间卷积部分(中间卷积部分包括如图所示的Stage1到Stage4共计四个stage)。
-
网络输入部分
所有的ResNet网络输入部分是一个size=7x7, stride=2的大卷积核,以及一个size=3x3, stride=2的最大池化组成,通过这一步,一个224x224的输入图像就会变56x56大小的特征图,极大减少了存储所需大小。 -
网络中间卷积部分
中间卷积部分通过3*3卷积的堆叠来实现信息的提取。上图中每个矩阵后乘的数字,就是后面的列[2, 2, 2, 2]和[3, 4, 6, 3]等则代表了bolck的重复堆叠次数。 -
残差块实现
输入数据分成两条路,一条路经过两个3*3卷积,另一条路直接短接,二者相加经过relu输出。 -
网络输出部分
网络输出部分很简单,通过全局自适应平滑池化,把所有的特征图拉成1*1,对于res18来说,就是1x512x7x7 的输入数据拉成 1x512x1x1,然后接全连接层输出,输出节点个数与预测类别个数一致。
以上参照的是一位知乎大佬的文章,他在后面还写了如何改造得到自己的ResNet,放在Reference里了。
CRNN
CRNN网络结构可以分为三个部分:特征提取、序列建模、转录
-
特征提取(Convolutional Layers)
这里的卷积层就是一个普通的CNN网络,用于提取输入图像的Convolutional feature maps,即将大小为(32,100,3)的图像转换为 (1,25,100)大小的卷积特征矩阵。 -
序列建模(Recurrent Layers)
这里的循环网络层是一个深层双向LSTM网络,在卷积特征的基础上继续提取文字序列特征。
RNN循环神经网络还没有好好看过,这边使用RNN的好处记一下笔记:1. 让网络可以结合上下文进行识别 2. 反传时将残差传给输入层。 -
转录(Transcription Layer)
将RNN输出做softmax后,为字符输出。
CRNN有几个优点:
- 它可以对整个文本进行识别,不定长
- 这个网络不在乎文字大小
- 可以自己添加词库(我的理解是,准确率就能提高不少
- 生成的模型小,准确率提高
这边要注意的是,CRNN没有全连接层,因为它就是要将特征提取后进行对比,我的理解是,如果有全连接层,就会把一些特征归一化(去掉了),会影响后面找出可能字符的过程。
Baseline
自己的理解
- 先将所需的库导入
import os, sys, glob, shutil, json
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import cv2
from PIL import Image
import numpy as np
from tqdm import tqdm, tqdm_notebook
%pylab inline
import torch
torch.manual_seed(0) # 让每次得到的随机数是固定的
torch.backends.cudnn.deterministic = False # 每次返回的卷积算法将是不确定的
torch.backends.cudnn.benchmark = True # 可以在 PyTorch 中对模型里的卷积层进行预先的优化
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset
- 定义读取数据集
class SVHNDataset(Dataset): # 这个类,可以让使用mini batch的时候进行多线程并行处理,加快准备数据集的速度
def __init__(self, img_path, img_label, transform=None):
```
TODO:
初始化文件路径+label,这边就是初始化该类的一些基本参数。
```
self.img_path = img_path
self.img_label = img_label
if transform is not None:
self.transform = transform
else:
self.transform = None
def __getitem__(self, index):
```
TODO:
从文件中读取数据,RGB图像
预处理 transform()
返回数据对:图像和标签
```
img = Image.open(self.img_path[index]).convert('RGB')
if self.transform is not None:
img = self.transform(img)
lbl = np.array(self.img_label[index], dtype=np.int)
lbl = list(lbl) + (5 - len(lbl)) * [10]
return img, torch.from_numpy(np.array(lbl[:5]))
def __len__(self):
return len(self.img_path)
Dataset
类是Pytorch中所有数据集加载类中应该继承的父类。这好像是pytorch独有的,解决视觉问题的基础是定义一个数据集,keras和tenseflow里面就没有。__getitem__
和 __len__
这两个私有成员函数必须被加载,不然会报错。
__getitem__
:编写支持数据集索引的函数,接收一个index
,返回图像和标签,这个index
通常是一个list,里面包含了图像数据的路径和标签信息。
__len__
:表示返回数据集的大小
关于RGB
:对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是RGB。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为L。
3. 定义读取数据
train_path = glob.glob('input/mchar_train/*.png')
train_path.sort()
train_json = json.load(open('input/mchar_train.json'))
train_label = [train_json[x]['label'] for x in train_json]
print(len(train_path), len(train_label))
train_loader = torch.utils.data.DataLoader(
SVHNDataset(train_path, train_label,
transforms.Compose(