计算机视觉实践 - 街景字符编码识别/关于Task1的一些笔记

本文介绍了计算机视觉赛题——街道字符识别,涉及ResNet18和CRNN两种模型。ResNet18包含输入、中间卷积和输出部分,而CRNN由卷积、循环和转录层构成,适用于不定长字符识别。作者在实践中遇到环境配置和模型训练等问题,并提供了相关论文和资源链接。
摘要由CSDN通过智能技术生成

计算机视觉实践 - 街景字符编码识别 关于Task1的一些笔记


最近参加了DataWhale的计算机视觉入门比赛,认识了很多大佬。虽然之前有过基于深度学习的一些实操经验,但对其中的原理还是不怎么懂,更别提模型的创新了。希望这次比赛过后,在理论和代码能力方面都能有所提高。

Task 1 赛题理解

  1. 赛题名称:零基础入门CV之街道字符识别
  2. 赛题目标:通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。
  3. 赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。
    为了简化赛题难度,赛题数据采用公开数据集SVHN,因此大家可以选择很多相应的paper作为思路参考。

学习情况

  1. 查阅相关论文,阅读顺序打算是从定长字符识别不定长字符识别,最后专业的解题思路是先检测再识别。这也是官方给出的不同阶段的解题思路。
    这两天先看了CRNN和Baseline中的ResNet18的论文,等等奉上笔记。

  2. 试着跑了一下Baseline,还是有一些问题。

字符识别论文笔记

ResNet18

先来看一下Baseline中的检测框架
ResNet结构
如上图所示,这个表示的是ResNet系列的结构,因为除了ResNet18, 还有Res34,Res50,Res101,Res152这些网络。
每个网络都包括三个主要部分:输入部分、输出部分和中间卷积部分(中间卷积部分包括如图所示的Stage1到Stage4共计四个stage)。
ResNet18,其中18 = 17个卷积层+1个全连接层

  • 网络输入部分
    所有的ResNet网络输入部分是一个size=7x7, stride=2的大卷积核,以及一个size=3x3, stride=2的最大池化组成,通过这一步,一个224x224的输入图像就会变56x56大小的特征图,极大减少了存储所需大小。

  • 网络中间卷积部分
    中间卷积部分通过3*3卷积的堆叠来实现信息的提取。上图中每个矩阵后乘的数字,就是后面的列[2, 2, 2, 2]和[3, 4, 6, 3]等则代表了bolck的重复堆叠次数。

  • 残差块实现
    输入数据分成两条路,一条路经过两个3*3卷积,另一条路直接短接,二者相加经过relu输出。

  • 网络输出部分
    网络输出部分很简单,通过全局自适应平滑池化,把所有的特征图拉成1*1,对于res18来说,就是1x512x7x7 的输入数据拉成 1x512x1x1,然后接全连接层输出,输出节点个数与预测类别个数一致。

以上参照的是一位知乎大佬的文章,他在后面还写了如何改造得到自己的ResNet,放在Reference里了。

CRNN

CRNN网络结构可以分为三个部分:特征提取、序列建模、转录
CRNN网络结构

  • 特征提取(Convolutional Layers)
    这里的卷积层就是一个普通的CNN网络,用于提取输入图像的Convolutional feature maps,即将大小为(32,100,3)的图像转换为 (1,25,100)大小的卷积特征矩阵。

  • 序列建模(Recurrent Layers)
    这里的循环网络层是一个深层双向LSTM网络,在卷积特征的基础上继续提取文字序列特征。
    RNN循环神经网络还没有好好看过,这边使用RNN的好处记一下笔记:1. 让网络可以结合上下文进行识别 2. 反传时将残差传给输入层。

  • 转录(Transcription Layer)
    将RNN输出做softmax后,为字符输出。

CRNN有几个优点

  1. 它可以对整个文本进行识别,不定长
  2. 这个网络不在乎文字大小
  3. 可以自己添加词库(我的理解是,准确率就能提高不少
  4. 生成的模型小,准确率提高

这边要注意的是,CRNN没有全连接层,因为它就是要将特征提取后进行对比,我的理解是,如果有全连接层,就会把一些特征归一化(去掉了),会影响后面找出可能字符的过程。

Baseline

自己的理解

  1. 先将所需的库导入
import os, sys, glob, shutil, json
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import cv2

from PIL import Image
import numpy as np

from tqdm import tqdm, tqdm_notebook

%pylab inline

import torch
torch.manual_seed(0)  # 让每次得到的随机数是固定的
torch.backends.cudnn.deterministic = False  # 每次返回的卷积算法将是不确定的
torch.backends.cudnn.benchmark = True  # 可以在 PyTorch 中对模型里的卷积层进行预先的优化

import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset
  1. 定义读取数据集
class SVHNDataset(Dataset): # 这个类,可以让使用mini batch的时候进行多线程并行处理,加快准备数据集的速度
    def __init__(self, img_path, img_label, transform=None):
    ```
    TODO:
    初始化文件路径+label,这边就是初始化该类的一些基本参数。
    ```
        self.img_path = img_path
        self.img_label = img_label 
        if transform is not None:
            self.transform = transform
        else:
            self.transform = None

    def __getitem__(self, index):
    ```
    TODO:
    从文件中读取数据,RGB图像
    预处理 transform()
    返回数据对:图像和标签
	```
        img = Image.open(self.img_path[index]).convert('RGB')

        if self.transform is not None:
            img = self.transform(img)
        
        lbl = np.array(self.img_label[index], dtype=np.int)
        lbl = list(lbl)  + (5 - len(lbl)) * [10]
        return img, torch.from_numpy(np.array(lbl[:5]))

    def __len__(self):
        return len(self.img_path)

Dataset类是Pytorch中所有数据集加载类中应该继承的父类。这好像是pytorch独有的,解决视觉问题的基础是定义一个数据集,keras和tenseflow里面就没有。__getitem____len__这两个私有成员函数必须被加载,不然会报错。
__getitem__:编写支持数据集索引的函数,接收一个index,返回图像和标签,这个index通常是一个list,里面包含了图像数据的路径和标签信息。
__len__:表示返回数据集的大小
关于RGB:对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是RGB。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为L
3. 定义读取数据

train_path = glob.glob('input/mchar_train/*.png')
train_path.sort()
train_json = json.load(open('input/mchar_train.json'))
train_label = [train_json[x]['label'] for x in train_json]
print(len(train_path), len(train_label))

train_loader = torch.utils.data.DataLoader(  
    SVHNDataset(train_path, train_label,
                transforms.Compose(
天池是一个著名的数据科学竞赛平台,而datawhale是一家致力于数据科学教育和社群建设的组织。街景字符编码识别是指通过计算机视觉技术,对街道场景中的字符进行自动识别和分类。 街景字符编码识别是一项重要的研究领域,对于提高交通安全、城市管理和智能驾驶技术都具有重要意义。街道场景中的字符包括道路标志、车牌号码、店铺招牌等。通过对这些字符进行准确的识别,可以辅助交通管理人员进行交通监管、道路规划和交通流量分析。同时,在智能驾驶领域,街景字符编码识别也是一项关键技术,可以帮助自动驾驶系统准确地识别和理解道路上的各种标志和标识,为自动驾驶提供可靠的环境感知能力。 天池和datawhale联合举办街景字符编码识别竞赛,旨在吸引全球数据科学和计算机视觉领域的优秀人才,集思广益,共同推动该领域的研究和发展。通过这个竞赛,参赛选手可以使用各种机器学习和深度学习算法,基于提供的街景字符数据集,设计和训练模型,实现准确的字符编码识别。这个竞赛不仅有助于促进算法研发和技术创新,也为各参赛选手提供了一个学习、交流和展示自己技能的平台。 总之,天池datawhale街景字符编码识别是一个具有挑战性和实际应用需求的竞赛项目,旨在推动计算机视觉和智能交通领域的技术发展,同时也为数据科学爱好者提供了一个学习和展示自己能力的机会。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值