应用
kongfangyi
这个作者很懒,什么都没留下…
展开
-
使用keras自定义神经网络层
“现在的深度学习无非就是堆神经网络模型”这句话既对也不全对,深度学习能够取得如此大的进步在于神经网络的层数增加。但对模型并不是把别人已经做好的模型在自己的机子上跑一下,或者简单堆叠就可以了,而是要有自己的想法产生自己的改进模型。keras提供了自定义层的编程范式,但是很多书都没有介绍,可能是一般的应用用不到。另一方面效果不一定好,需要有一定的理论功底才能设计新的模型。手头刚好需要设计一个自定义层模型,现将方法记录如下。编程范式...原创 2020-08-23 16:28:43 · 1128 阅读 · 1 评论 -
将bert模型作为keras模块使用
1、为什么要用tranformers 在NLP领域如果不使用SOTA方法,存在诸多缺点,效果难以保障:1、SOTA方法结果优,其模型是各种大牛使用数百张TPU,构造的庞大模型,各种参数得到了调优,其训练效果已经达到NLP领域的巅峰;2、泛化能力强,SOTA方法是在海量级数据集上训练产生的,所以适应范围广泛,其泛化能力很强;3、参数多,模型深度高,例如bert模型使用12层,12个多头注意力机制及768个隐藏单元,多达一亿个参数,其训练集数据多达34亿原创 2020-08-19 15:28:04 · 1147 阅读 · 0 评论 -
统计学习导论(1)------------一般线性模型介绍
线性模型介绍 线性回归模型是指自变量和因变量之间存在简单线性关系的模型。可以表示为:yi=β0+∑βixi y{_i} ={\beta}{_0} +{\sum{\beta}{_i}x{_i} } yi=β0+∑βixi进一步而言如果将x0设定为1则模型可以化简表示为:yi=∑βixi y{_i} ={\sum{\beta}{_i}x{_i} } yi=∑βixi其中βi称之为系数或参数。上述模型使用矩阵表示为:Y=BXY∈R原创 2020-08-05 01:37:05 · 1236 阅读 · 0 评论 -
编写NLP处理程序的套路学习2-文本相似度度量
1、原理 文本相似度的度量有很多种方法,特定词出现频度,整体文本风格等。本文将使用tf-idf方式,通过cosin相似度度量两个文本的相似度。...原创 2020-02-26 20:32:51 · 187 阅读 · 0 评论 -
编写NLP处理程序的套路学习1---------命名实体识别的Chanel实现
1、引子 练武之人无论天资再聪明没有师傅的指点,或者武林秘籍都不可能自创一套体系,因此各种武功秘籍成了武林争夺的至宝,大家争破头皮也要挤进名门正派。对于学习自然科学及工程领域,自己如果没有团队,没有师傅耐心的带着学习。自学的东西可能非常零散,即使涉猎范围非常广泛。但是没有系统性的学习难成气候。就像学武术无师无派一样,在这种情况之下,武林秘籍就显得尤为重要了,这个武林秘...原创 2020-02-25 23:54:03 · 193 阅读 · 0 评论