在线对对联

对对联的起源可以追溯到中国古代,它与中国文化有着密切的关系。

1. 最早的对对联出现在汉朝,当时称为“对句”。它起源于民间,后来逐渐成为文人雅士的精神寄托。

2. 唐代时,对对联的格式更加规范,并被称为“春联”。它成为春节张贴的主要内容,寓意吉祥。

3. 宋代以后,对对联被文人学士广泛使用,吟诵对对联也成为一个文人雅事。

4. 对对联的盛行反映了中国文化重视语言的节奏之美、意境的创造。它融合诗、书、画于一体。

5. 对对联的格式有对仗、平仄、字数等语言规律。它展现了中国文化里儒家思想中蕴含的理性思维。

6. 它还融合了道家的意境之美,富有哲理和涵养,成为中国文化的重要代表。

7. 今天,对对联仍广泛流传,成为中华传统文化的一个标志性符号。每逢春节,张贴春联成为最重要的仪式之一。

综上所述,对对联承载了中华文化的哲学观念和美学意蕴,它的产生和发展脱胎于中国古代文化传统,是中华文化的一个独特代表。

随着AI技术的进步,对对联这种传统技艺正在变为一种艺术创作的范畴,借助AI我们可以实现任意文字的对联绝唱,下面是我制作的一个在线对对联的小工具,有需要的可以拿走,

先看一下界面,先睹为快

在线使用地址

 在线对对联icon-default.png?t=N6B9https://zuowen.toolxq.com/front/ai/duilian/duilian

 上面只是一个小例子,AI还有无限的可能性值得我们去挖掘,喜欢对对联的小伙伴可以行动起来了,祝你好运。

下面是相关代码分享:

<div class="row">
    <div class="col-xs-12">
        
    </div>
    
    <div class="col-md-12 col-xs-12">
        <h2 class="text-center page-header">在线对对联</h2>
        <form class="form-signin">
            <div class="form-group">
                <label>原文</label>
                <textarea id="from" style="height: 200px;width: 100%;"></textarea>
                <button class="btn btn-success" type="button" onclick="doTrans()">给出下联</button>
            </div>
        </form>
        <div id="dataDiv">
            <textarea id="to" style="height: 200px;width: 100%;"></textarea>
        </div>
        <button type="button" class="copy btn btn-success" data-clipboard-target="#to">复制</button>
    </div>
</div>

另外分享几个千古绝对供大家赏析

南通州北通州南北通州通南北;东当铺西当铺东西当铺当东西

雾锁山头山锁雾;天连水尾水连天

一掌擎天五指三长两短;六合插地七层四面八方

重重叠叠山曲曲环环路;高高下下树叮叮咚咚泉

风竹绿竹,风翻绿竹竹翻风;雪里白梅,雪映白梅梅映雪

望江楼,望江流,望江楼下望江流,江楼千古,江流千古;印月井,印月影,印月井中印月影,月井万年,月影万年。

欲知千古事;须读五车书。 

虽是毫发生意;却是顶上功夫。

君凭我广开视野;我助君明察秋毫。

事与人便人称便;货招客来客自来。

此是春华秋实事业;并非东涂西抹文章。

词源倒流三江水;笔阵独扫千人军。

玉露磨来浓雾起;银笺染处淡云生。

银流鹄白三都贵;墨染鸦青五色奇。

笔架山高虹气现;砚池水满墨花香。

好将妙手夸针巧;漫把春风细剪裁。

欢迎春夏秋冬客;款待东西南北人。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是一个简单的Seq2Seq模型的代码示例,用于实现自动对话系统: ```python import tensorflow as tf # 定义Seq2Seq模型 class Seq2SeqModel(object): def __init__(self, vocab_size, embedding_size, hidden_size): self.vocab_size = vocab_size self.embedding_size = embedding_size self.hidden_size = hidden_size # 定义编码器和解码器 self.encoder = tf.keras.layers.LSTM(hidden_size, return_sequences=True, return_state=True) self.decoder = tf.keras.layers.LSTM(hidden_size, return_sequences=True, return_state=True) # 定义嵌入层 self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_size) # 定义最后的全连接层 self.fc = tf.keras.layers.Dense(vocab_size, activation=tf.keras.activations.softmax) # 定义编码器 def encode(self, inputs): embedded = self.embedding(inputs) outputs, state_h, state_c = self.encoder(embedded) states = [state_h, state_c] return outputs, states # 定义解码器 def decode(self, inputs, states): embedded = self.embedding(inputs) outputs, state_h, state_c = self.decoder(embedded, initial_state=states) states = [state_h, state_c] return outputs, states # 定义前向传播函数 def call(self, inputs, targets): enc_outputs, enc_states = self.encode(inputs) dec_inputs = tf.expand_dims([2] * BATCH_SIZE, 1) dec_states = enc_states outputs = [] for t in range(1, targets.shape[1]): predictions, dec_states = self.decode(dec_inputs, dec_states) outputs.append(predictions) dec_inputs = tf.expand_dims(targets[:, t], 1) outputs = tf.stack(outputs, axis=1) return self.fc(outputs) ``` 在上面的代码中,我们定义了一个Seq2Seq模型,其中包含一个编码器和一个解码器,它们都是LSTM层。我们还定义了一个嵌入层和一个全连接层,用于将输入和输出转换为向量形式。 在编码器中,我们首先将输入通过嵌入层进行嵌入,然后将嵌入后的向量输入到LSTM层中,得到编码器的输出和状态。在解码器中,我们首先将目标输入通过嵌入层进行嵌入,然后将嵌入后的向量和编码器的状态输入到LSTM层中,得到解码器的输出和状态。最后,我们将解码器的输出通过全连接层进行映射,得到最终的预测结果。 在前向传播函数中,我们首先将输入通过编码器进行编码,然后将解码器的输入初始化为一个特殊的“开始”符号。接下来,我们循环遍历目标序列中的每个位置,每次将解码器的输入设置为当前位置的目标符号,并将解码器的状态设置为上一次的状态。最后,我们将解码器的输出通过全连接层进行映射,得到最终的预测结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值