- 博客(15)
- 收藏
- 关注
原创 cat /proc/meminfo 解读
这些值可以帮助你了解系统的内存使用情况,例如查看是否有足够的空闲内存供新进程使用,或者系统是否开始使用交换空间,这可能会影响性能。通常情况下,即使“MemFree”显示的数值较低,如果“Buffers”和“Cached”的值较高,则表明系统内存管理正常,因为这部分内存可以快速释放给需要的应用程序。是一个特殊的文件,它存在于 Linux 操作系统中,用于提供关于系统内存使用情况的信息。查看其内容时,你会看到一系列有关系统物理内存和虚拟内存的统计信息。
2024-07-29 16:05:08 480
原创 高并发的Linux主机应该优化脏页参数为多少
对于高并发的 Linux 主机来说,优化脏页相关的参数是为了更好地平衡内存缓存与磁盘 I/O 性能。这些参数的设置取决于多种因素,包括系统的内存大小、应用的工作负载特性以及预期的响应时间等。下面是一些建议的设置,但请注意这些只是指导性的建议,实际的设置应根据您的具体情况进行调整。
2024-07-29 15:50:24 311
原创 使用 Grafana Loki 和 MinIO 进行日志记录
是一个以 Prometheus 为蓝本的分布式多租户日志聚合系统。Loki 在2018 年西雅图 KubeCon 大会上宣布并在 AGPLv3 许可下发布,在云原生可观察性堆栈中占据突出地位,并经常与 Grafana 和 Prometheus 结合使用,以在单个 UI 中查看指标、日志和跟踪并发出警报。将应用程序集 Grafana-Loki-Promtail 视为大致等同于 ELK 堆栈是有帮助的,Promtail 代理将日志发送(拖尾)到 Loki 数据存储并在 Grafana 中将它们可视化。
2024-07-27 09:02:02 492
原创 Ubuntu 22.04上的MySQL 8数据文件夹迁移到/mnt/mysql-data
请注意,在执行这些步骤之前,建议创建数据的完整备份,并在尝试这些操作之前在测试环境中验证每个步骤。如果您的系统使用了SELinux或其他安全模块,您可能还需要更新相应的安全策略。更新AppArmor配置(如果已启用)以允许MySQL在新路径中读写。更新MySQL配置文件my.cnf(如果存在),将数据目录指向新位置。
2024-03-10 23:15:49 599 1
原创 检索增强生成(RAG)是什么
什么是检索增强生成?检索增强生成(RAG)是对大型语言模型输出进行优化的方法,使其能够在生成响应之前引用训练数据来源之外的权威知识库。大型语言模型(LLM)通过海量数据进行训练,利用数十亿个参数执行诸如回答问题、语言翻译和生成句子等任务。在已经具备强大功能的LLM基础上,RAG通过扩展其能力,使其能够访问特定领域或企业的内部知识库,而无需重新训练模型。这种方法经济高效,能够有效改进LLM输出,在不同情境下保持相关性、准确性和实用性。
2024-03-09 09:56:21 570
原创 Pytorch 无法识别GPU问题解决方法
在本文中,我们将介绍如何解决PyTorch无法识别GPU的问题,并提供一些示例来说明解决方法。在深度学习领域,GPU是加速模型训练和推理的重要工具之一。然而,有时候我们会面临PyTorch无法正确识别GPU的情况,即torch.cuda.is_available()函数返回False。接下来,我们将详细讨论这个问题及其解决方法。
2024-02-27 23:41:08 2441
原创 使用Python怎么读取zabbix监控数据
要使用Python从Zabbix中读取数据,可以使用zabbix-api库。现在就可以开始查询数据了。
2024-02-25 21:51:17 821 1
原创 SpaceMesh Mining 教程
當參與Spacemesh的用戶在完成P盤工作後需要完成兩個部分工作:PoET+PoST,這兩部分均是在不同的規定時間完成,具體可參考後續的時間表。註意!只有PoET和PoST均完成的用戶才可以獲得收益。Spacemesh相關P盤教程:說明:1.Spacemesh每個紀元epoch周期為14天,在8月7日完成PoET的將在8月20日完成PoST,收益將在8月25日後發放(之後用戶收益將每隔14天發放一次) 後續PoET時間為8月7日+N14 **後續PoST時間為8月20日+N。
2024-02-24 10:09:13 807
原创 OpenAI Embeddings 文本嵌入模型
OpenAI 的文本嵌入模型可以计算文本字符串的特征向量,通过向量计算字符串之间的语义相关性。embeddings模型计算出来的向量数据是浮点数数组。两个向量之间的距离可以表达它们之间的相关性。距离越近表明相关性越高,距离越远表明相关性越低。
2024-02-23 11:19:20 1047
原创 文本嵌入(embedding)介绍
文本嵌入(Text Embedding)是自然语言处理中的一个重要概念,它的目标是将文本中的词表示成固定长度的稠密向量,也称为词向量(Word Vector)。这样每个词都可以用一个连续的、低维的稠密向量来表示,比如200-300维。文本嵌入的主要目的是捕捉每个词的语义信息,使得语义相关的词在嵌入空间中距离较近,不相关的词距离较远。这样就可以用向量间的距离来表示词之间的语义关系。
2024-02-22 23:58:42 1758
原创 中国大陆用户如何通过Fetch GitHub Hosts访问GitHub
到Releases或FastGit镜像中下载您的系统版本(目前支持WindowsLinuxMacOS。
2024-02-22 01:05:41 742
原创 【译】理解LSTM循环神经网络(通俗易懂版)
之前也提到过RNNs取得了不错的成绩,这些成绩很多是基于LSTMs来做的,说明LSTMs适用于大部分的序列场景应用。一般文章写法会堆一堆公式吓唬人,希望本文一步一步的拆分能有助于大家的理解。LSTMs对于RNNs的使用是一大进步。那么现在还有个问题,是否还有更大的进步?对于很多研究者来说,但是是肯定的,那就是attention的问世。attention的思想是让RNN在每一步挑选信息的时候都能从更大的信息集里面挑选出有用信息。
2024-02-20 00:08:56 676
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人