先准备数据源,以两个文件名字符串做为值,保存两个document,如下图:
然后以"path:txt"为查询条件,来查询索引文件。我调试发现会有6个步骤。数据主要来源于3个文件,tim、doc、fdt。
1.先根据查询字段与词找出该字段所有的term(.tim文件中的terms)
2.加载tim文件(seekExact方法中currentFrame.loadBlock)
从terms查到匹配的term,匹配term下标记录在SegmentTermsEnumFrame.nextEnt(SegmentTermsEnumFrame.scanToTermLeaf(BytesRef, boolean) line: 567)
3.从.tim的stats里取出词频,metadata里取出位置信息
4.如果命中多个doc,定位到它们在doc文件的开始下标
5.1 单个doc,直接取出tim metadata里的singletonDocID
5.2 多个doc,读出所有docId
6.根据docId,从fdt文件中取出原字符串。
然后以"path:txt"为查询条件,来查询索引文件。我调试发现会有6个步骤。数据主要来源于3个文件,tim、doc、fdt。
1.先根据查询字段与词找出该字段所有的term(.tim文件中的terms)
2.加载tim文件(seekExact方法中currentFrame.loadBlock)
从terms查到匹配的term,匹配term下标记录在SegmentTermsEnumFrame.nextEnt(SegmentTermsEnumFrame.scanToTermLeaf(BytesRef, boolean) line: 567)
4.如果命中多个doc,定位到它们在doc文件的开始下标
6.根据docId,从fdt文件中取出原字符串。
最后总结下查询过程如下图,虽然这个过程比较简单,但它是基于一个强大的索引文件结构。这个索引结构很复杂,主要数据结构有:分词信息在tim文件、倒排doc列表在doc文件、原数据在fdt文件。